— Measure Theory 2014: Homework 1 –

Email your homework to Stein Bethuelsen,

bethuelsensa@math.leidenuniv.nl

or, place it in Stein's mailbox.

Homework is due on 08.10.2014, 11.15am (sharp!!!)

Final grade: Homework (90%)+Attendance (10%).

- (1) [20 points] Bauer, Chapter I, Ex. 2, p.13.
- (2) [40 points] Hausdorff measure and Hausdorff dimension on \mathbb{R}^d . Let $C \subset \mathbb{R}^d$, $\epsilon > 0$ and $s \ge 0$.

$$\mathcal{H}^{s}_{\epsilon}(C) = \inf \left\{ \sum_{n=1}^{\infty} \left(\operatorname{diam}(A_{n}) \right)^{s} : \quad C \subseteq \bigcup_{n=1}^{\infty} A_{n}, \ \operatorname{diam}(A_{n}) < \epsilon \right\},$$

where diam $(S) = \sup_{x,y \in S} |x - y|$. Finally, let

$$(\star)$$

$$\mathcal{H}^s(C) = \lim_{\epsilon \to 0} \mathcal{H}^s_\epsilon(C)$$

Prove that

- the limit $\epsilon \to 0$ in (\star) exists;
- $\mathcal{H}^{s}(\cdot)$ is an <u>outer measure</u>:

$$\mathcal{H}^{s}(\emptyset) = 0, \ \mathcal{H}^{s}(C) \ge 0, \quad \mathcal{H}^{s}(\cup_{n} C_{n}) \le \sum_{n} \mathcal{H}^{s}(C_{n}).$$

• For any $C, D \subset \mathbb{R}^d$ with $\operatorname{dist}(C, D) = \inf_{x \in C, y \in D} |x - y| > 0$,

$$\mathcal{H}^s(C \cup D) = \mathcal{H}^s(C) + \mathcal{H}^s(D)$$

• For any C, there exists $s_0 \in [0, +\infty]$ such that

$$\mathcal{H}^{s}(C) = \begin{cases} +\infty, & s < s_{0}, \\ 0, & s > s_{0} \end{cases}$$

This critical value s_0 is called the Hausdorff dimension of C, $s_0 = \dim_H(C)$.

• Compute the Hausdorff dimension of the middle-third Cantor set

$$C = [0,1] \setminus \bigcup_{n=1}^{\infty} \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{3k+1}{3^n}, \frac{3k+2}{3^n}\right).$$

In other words,

where

$$C_0 = [0, 1]$$

$$C_1 = [0, 1/3] \cup [2/3, 1]$$

$$C_2 = [0, 1/9] \cup [2/9, 1/3] \cup [2/3, 7/9] \cup [8/9, 1]$$

 $C = \lim_{n \to \infty} C_n,$

i.e., C_{n+1} is obtained by removing the "middle-thirds" from intervals forming C_n .

(3) [20 points] Inner measures. Suppose \mathcal{A} is a σ -algebra and μ is a finite measure on \mathcal{A} . Define outer and inner measures as follows:

$$\mu^*(Q) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) : \quad \forall n, \ A_n \in \mathcal{A} \text{ and } Q \subseteq \bigcup_n A_n \right\},$$
$$\mu_*(Q) = \sup \left\{ \mu(A) : \quad A \subset Q, A \in \mathcal{A} \right\}.$$

Let $\overline{\mathcal{A}}$ be the collection of all sets $Q, Q \subseteq \Omega$, such that

$$\mu_*(Q) = \mu^*(Q).$$

Show that $\overline{\mathcal{A}}$ is a σ -algebra, and $\mu_*|_{\overline{\mathcal{A}}} = \mu^*|_{\overline{\mathcal{A}}}$ is a measure of $\overline{\mathcal{A}}$.

(4) [20 points] Bauer, Chapter I, Ex. 6a, p.26.