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In lectures’today, we follow Gouvêa’s notes [1] on the famous course taught by J.-P. Serre
at Harvard University during Fall 1985. We will introduce what we call Serre’s Problem that
is the main object of study of this course.

1 Serre’s Problem

Let C be a smooth, irreducible, projective curve of genus g defined over a finite field Fq. The
Hasse-Weil bound, that is a consequence of the Riemann Hypothesis over finite field proved
by Weil and studied in lecture 2, states that

∣ #C(Fq) − (q + 1) ∣≤ 2g
√
q.

For a given pair (q, g), we define Nq(g) = Sup
C

#C(Fq). Weil’s equality implies

Nq(g) ≤ q + 1 + 2g
√
q.

We have already seen an improvement, due to Serre, of this bound when q is not a square
in lecture 2. Namely, Nq(g) ≤ q + 1 + g⌊2

√
q⌋. We recover the notation from that result.

The number of point of a curve can be computed by #C(Fq) = q + 1 − t where t = Tr(π)
is the trace of the Frobenius endomorphism π. We denote the roots of the characteristic
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polynomial of the Frobenius endomorphism by πi. This polynomial is the numerator of the
Zeta Function of the curve, it has integer coefficients and degree equal to 2g. Moreover,
its roots are conjugate numbers with norm equal to q1/2, so they are what we called Weil-
numbers in lecture 5. We call ai = πi + πi for i = 1, .., g, we put m = ⌊2

√
q⌋ and we write

xi =m + 1 + ai.
MOTIVATION: CODING THEORY, CRYPTO, PROBLEM STUDIED BY MANY PEOPLE

1.1 Defect 1 and 2

Theorem 1.1. With previous notation, we have
i) if Tr(π) = gm, then a1 = ... = ag =m,
ii) if Tr(π) = −gm, then a1 = ... = ag = −m.

Proof. It is an easy consequence of Lemma 2.1 in lecture’s notes 2.

Theorem 1.2. Let A be an abelian variety of dimension g over Fq, and π its Frobenius
endomorphism.

i) If Tr(π) = gm − 1 (”down by 1”), then

(a1, ..., ag) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(m, ...,m
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

g−1

,m − 1)

(m, ...,m
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

g−2

,m + −1+
√

5
2 ,m + −1−

√

5
2 ) if g ≥ 2

ii) If Tr(π) = gm − 2 (”down by 2”), then one of the seven following cases occurs:

(a1, ..., ag) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(m, ...,m,m − 2)

(m, ...,m,m − 1,m − 1) if g ≥ 2

(m, ...,m,m +
√

2 − 1,m −
√

2 − 1) if g ≥ 2

(m, ...,m,m +
√

3 − 1,m −
√

3 − 1) if g ≥ 2

(m, ...,m,m − 1,m + −1+
√

5
2 ,m + −1−

√

5
2 ) if g ≥ 3

(m, ...,m,m + −1+
√

5
2 ,m + −1−

√

5
2 ,m + −1+

√

5
2 ,m + −1−

√

5
2 ) if g ≥ 4

(m, ...,m,m + 1 − 4cos2(π7 ),m + 1 − 4cos2(2π
7 ),m + 1 − 4cos2(3π

7 )) if g ≥ 3

Proof. We assume Siegel’s Theorem stated in these notes as Theorem 1.3. Then, for all k ≥ 0
a positive integer, the number of totally positive integers α with Tr(α) = d(α)+k is finite for
each k, and these α’s can be explicitly computed. By Siegel, d + k > 3/2d, so d < 2k. These
α’s are the possibilities for m + 1 − ai (Tr(αi) = ∑αi = gm − k, then ∑(m + 1 − αi) = k + g).
The number α satisfies xd − (d+ k)xd−1 + ... = 0. Since all its conjugates are also positive, we
get bounds for the other coefficients, and then there is a finite number of possibilities.

For k = 0, we get α = 1. For k = 1, we get α = 3±
√

5
2 or d = 1, so α = 2. Case, k = 2, so

defect 2 case is left as an exercise.
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Theorem 1.3 (Siegel). Let α ≠ 1, 3±
√

5
2 be an algebraic integer that is totally positive (it and

all its conjugates are positive real numbers) and of degree d. Then Tr(α) > 3
2d.

For curious reader, the proof can be found in the main reference [1].

Remark 1.4. The second defect 1 case is possible only if {2
√
q} ≥

√

5−1
2 , since m + −1+

√

5
2 ≤

2
√
q.

Remark 1.5. All the possibilities listed in Theorem 1.2 occur for abelian varieties, but there
are not necessarily jacobians of curves. The schotky problem is the problem of deciding
which abelian varieties are jacobians. For dimension 2 and 3, it is proved, that all principal
polarized abelian variety with an ”indecomposable” polarization are jacobians of curves.

1.2 Other results

Theorem 1.6. Suppose {1, ..., g} can be partitioned in two non-empty subsets I and J such
that:

a) The ai (i ∈ I) are stable by Gal(Q/Q). Idem for J .
b) All the ai − aj for i ∈ I and j ∈ J are units.
Then the given abelian variety is not a Jacobian.

Proof. Maybe, it is better to skip it ........ but I would like to start to talk about decomposable
polarizations ....

Theorem 1.7 (Beauville). If q = pe is either of the form x2 + 1 (x ∈ Z) or x2 +x+ 1 (x ∈ Z),
then, if C is a curve of genus g ≥ 2 over Fq, #C(Fq) ≠ q + 1 ± gm, where m = ⌊2q1/2⌋ = 2x or
2x + 1, respectively.

Proof. Consider the case q = x2 + 1, so m = 2x, and assume that #C(Fq) = q + 1 − gm. Then
we can arrange the eigenvalues πi of the Frobenius endomorphism π as

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

π1 + π1 =m and π1π1 = q

...

πg + πg =m and πgπg = q

So, π1 = ..., πg and π1 = ... = πg. And necessarily π1 = x + i and π1 = x − i. Put σ = π − x ∈
End(Jac(C)), then σ2 = −1. We know that the action of the Frobenius is trivial in the
tangent space at the identity in the Jacobian, then the action of σ is the action of −x, but
x2 ≠ −1, so we get a contradiction.

2 Case g = 1

For the elliptic curve case, the characteristic polynomial of the Frobenius endomorphism has
degree 2, let call π and π to the two roots. The trace of the Frobenius is a = π + π, so that
#E(Fq) = q + 1 − a. The question is, given q, which a’s occurs for elliptic curves over Fq?
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Theorem 2.1. Let a ∈ Z such that ∣ a ∣≤ 2q1/2.
i) If a is prime to p, then there exists an elliptic curve over Fq with that value of a.

(Ordinary case)
ii) If p ∣ a, then there exists such an elliptic curve if and only if either: e is even and

a = ±2pe/2; e is even, p ≢ 1 mod 3 and a = ±pe/2; e even, p ≢ 1 mod 4 and a = 0; e is odd,
p = 2, or 3 and a = 0,±p

e+1
2 . (Supersingular case)

Proof. i) We construct the elliptic curve over the complex numbers, characteristic zero, and
then we reduce. We will see how to do this in next lecture.

ii) should we skip it?

Theorem 2.2. We have Nq(1) = q+1+m, except when q = pe, e ≥ 5 is odd and m ≡ 0 mod p,
in which case Nq(1) = q +m.

Proof. If q is not exceptional, this is a consequence of Theorem 2.1. Otherwise, just notice
that if p ∣m, then p ∤m − 1.

The smallest exceptional case is for q = 128 = 27.
The exceptional values of q = p2e

′
+1 are those for which the 2 < e′th decimal digit in the

p-adic expansion of 2
√
q is a zero. Let us see this in an example: 2

√
2 = 10.110101000001...,

so 27, 211, 215, 217, .. are exceptional and there infinitely many exceptional powers of 2. For
p = 3, 2

√
3 = 3.110112022..., so 37 is also exceptional.

3 Exercises

Exercise 3.1. Prove Theorem 1.2 for defect 2.

Exercise 3.2. Find the equivalent formula in remark 1.4 for the defect 2 cases.

Exercise 3.3. Check that the smallest exceptional case after Theorem 2.2 is q = 128.

Exercise 3.4. Prove that the construction of exceptional numbers using p-adic expansion
after Theorem 2.2 works. Compute the first exceptional 7-power.

Exercise 3.5. Provide maximal elliptic curves over Fq for q = 2,3,4,5 and 7.
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