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We have an intuitive idea of what cryptography is: its fundamental objetive is to enable
two people, usually refered to as Alice (A) and Bob (B), to communicate over an insecure
channel in such a way that an opponent, Oscar (O) or Eve (E) (because eavesdropper),
cannot understand what is being said. There are two different approaches, one that is design
the proper tool to insure secrecy, and the other one, that is the attack of these tools to find
out their weaknesses.

Cryptography has been used for long. Going back to Caesar, one finds the example of
”the shaved slave”. The main weakness (besides the fact that you have to wait for the hair
of the slave to grow ...) is that the slave can speak. The conclusion, is that the secrecy
cannot be based on the method, it has to be based on additional secret information, called
keys.

The main references for today’s lecture are chapters III, IV and V I in [1], chapters 1
and 2 in [3], chapter 6 in [2] and chapters 6,7 and 16 in [4].
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1 Basic definitions and examples

The information that Alice wants to send to Bob will be the plaintext. She will cipher or
encrypt the plaintext to obtain a ciphertext with the help of a key. Bob, who knows the
key will then decipher the ciphertext. While, Oscar, who does not, can try to decrypt it, in
order to get the plaintext.

Definition 1.1. A secret key cryptosystem is a 3-tuple (P,C,K) where the following condi-
tions are satisfied:

1. P is a finite set if possible plaintexts;

2. C is a finite set of possible ciphertexts;

3. K is a finite set of possible keys called keyspace;

4. Fir each K ∈ K, there is an encryption rule EK ∶ P → C and a decryption rule DK ∶

C → P such that DK ⊗ EK = Id. (So, EK is injective).

First of all, Alice and Bob have to choose a random key K ∈ K (we will discuss later
public-key cryptosystems). A message is a string x = x1...xn. Each x1 is encrypted using EK
as yi = EK . She sends the ciphertext y = y1...yn.

1.1 The shift cipher

Let represent the 26 usual letters by elements in Z/26Z (for instance A → 0, B → 1, ..., Z →
26). We consider then P = C = K = Z/26Z. For K ∈ K, we define

EK ∶ x→ x +K.

The decryption rule is given by
DK ∶ y → y −K.

In spite of its extreme weakness, there are only 26 possibilities for the key, it was used by
South officers during the American Civil War and even by the Russian army in 1915.

1.2 The substitution cipher

We take P = C = Z/26Z and K = S26, so the encryption and decryption rules for σ ∈ K are

EK ∶ x→ σ(x), DK ∶ y → σ−1(y).
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1.3 The Vigenère cipher

We define P = C = K = (Z/26Z)m. For a key (k1, ..., km) ∈ K, we define

EK(x1, ..., xm) = (x1 + k1, ..., xm + km), and

DK(y1, ..., ym) = (y1 − k1, ..., ym − km).

For m = 1, to recover the shift cipher.

1.4 The Hill cipher

We put P = C = (Z/26Z)m, and K = GLm(Z/26Z), and for a key K ∈ K, we define EK(x) = xK
and DK(y) = yK−1.

The Hill cipher is a generalization of Vigenère cipher.
In conclusion, we see that this cryptographic constructions are based on two principles:

substitutions of letters and affine transformation. In all this cases a exhaustive attack works
or otherwise a statistics one, see [4]

Of course, as the set of keys is always finite, exhaustive research is always an option
and thus any cryptosystem can be theoretically broken. However, the opponent has not an
infinite power of computation or unlimited time, so if the keyspace is too big (which means
more than 260 keys), one must have to try clever methods. For instance, statistical methods.
See 1.3.1 in [3].

Besides the encryption of the text we have to deal with issues on the protocol: how to
be sure that Alice is the sender? How to be sure that the message has not been modified?
Encryption is not enough for that and we will need to introduce new notions (e.g. signature).

2 Some cryptosystems

We list some of the main problems people deal with in cryptography.

1. Confidentiality: is the property that an information is not available to unauthorized
people.

2. Integrity: is the way to prevent an unauthorized modification of the data.

3. Authentication: consists in checking the identity of the different elements involved in
a communication.

4. Non-repudation: is a mechanism to prevent to deny a contract.

5. Signature: is a system to prove authentication of the sender, integrity of data and
non-repudiation.

6. Certification: is the way, a trusted entity validates a certain information.
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7. Key management: is the problem of distribution, integrity, ... of the keys.

8. Proof (Zero-knowledge proof): a proof of being in possession of a secret (without giving
extra information).

Of course, we will not have time to discuss them, but you can get an idea of the complexity
of the subject. We now list some of the most famous cryptosystems.

2.1 RSA

The possibility of the present scheme, called a public key cryptosystem, was first publicly
suggested by Delffie and Hellman in their classic paper. However, they did not yet have
a practical implementation. In the next years, several methods were proposed. The most
successful one, based on the idea that factorization of integers into their prime factors is
hard, was proposed by Rivest, Shamir, and Adleman in 1977, and is known as the RSA
algorithm.

Bob chooses two distinct large primes p and q and multiplies them together to form
n = pq. He also chooses an encryption exponent e such that gcd(e, (p − 1)(q − 1)) = 1. He
sends the pair (n, e) to Alice but keeps the values of p and q secret. In particular, Alice,
who could possibly be an enemy of Bob, never needs to know p and q to send her message
to Bob securely. Alice writes her message as a number m. If m is larger than n, she breaks
the message into blocks, each of which is less than n. However, for simplicity, let us assume
that m < n. Alice computes c ≡ me mod n ans sends c to Bob. Since Bob knows p and
q, he can compute (p − 1)(q − 1) and therefore can find the decryption exponent d with
de ≡ 1 mod (p − 1)(q − 1).

The primes p, q are taken randomly and with at least 100 digits in order to get a good
cryptosystem.

Remark 2.1. The problem of factorizing n is equivalent to computing φ(n).

Example 2.2. First, we choose integer (usually larger ...) k = 3, and l = 4, and we work
with an alphabet of N = 26 letters. To send the message ”YES” to a user A with enci-
phering key (n, e) = (46927,39423), we find the numerical equivalent of ”YES”, namely:
24 ⋅ 262 + 4 ⋅ 26 + 18 = 16346 (we split the message in blocks of size k), and then we compute
1634639423 mod 4927, which is 21166 = 1 ⋅ 263 + 5 ⋅ 262 + 8 ⋅ 26+ 2 =”BFIC” (blocks of length l).
How do A read the message?

The RSA is still used (with n larger than 2211) and it is a safe cryptosystem, but quantum
computers could eventually break them .....

2.2 DLP

Fix a prime p. Let α and β be nonzero integers mod p and suppose β = αx mod p. The
problem of finding x is called the discrete logarithm problem. If n is the smallest positive
integer such that αn = 1 mod p, we may assume 0 ≤ x < n, and then we denote x = Lα(β).
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A function f(x) is called a one-way function if f(x) is easy to compute, but, given y,
it is computationally infeasible to find x with f(x) = y. Modular exponentiation is such
an example, and multiplication of large primes can also be regarded as a probable one-way
function.

Under certain conditions, there are different attacks for the DLP: the Pohlig-Hellman
algorithm, the ”Baby Step, Giant Step” and the Index Calculus among others.

3 Elliptic curves cryptosystems

An elliptic curve is a genus 1 curve given by an equation E ∶ y2+a1xy+a3y = x3+a2x2+a4x+
a6/Fq. If the characteristic of the field is different from 2,3, we can make a1 = a2 = a3 = 0
(that is, we can find an Fq-isomorphic curve with these parameters equal to zero). We denote
by 0 = (0 ∶ 1 ∶ 0) the point at infinity. We can define a group law on the points of an elliptic
curve where 0 plays the roll of the zero element.

The group law can be just defined by explicitly algebraic formulas, but it is nice to see
how this group law looks for elliptic curves with real coefficients.

Figure 1 – The group law.

Algebraically, the group law for two points P1 = (x1, y1), and P2 = (x2, y2) is given by
P3 = P1 + P2 = (x3, y3), where

x3 =m
2 − x1 − x2, y3 =m(x1 − x3) − y1,

and

m =

⎧⎪⎪
⎨
⎪⎪⎩

(y2 − y1)/(x1 − x2) if P1 ≠ P2

(3x21 + b)/(2y1) if P1 = P2

.

If the slope m is infinite, then P3 = 0.
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In the lecture it has been discussed how to use Elliptic curves to factor integers, via
Lenstra algorithm. For a reference, see [5] We construct a cryptosystem based on the DLP
in the group of rational points of the curve (even if the group law is denoted additively, it
can be also consider as a multiplicative one).

The crucial issue concerning the security of an elliptic curve cryptosystem is whether
the discrete logarithm problem for the group E(Fq) of an elliptic curve is computationally
infeasible. By the Polish-Hellman algorithm, if the order of the point P can be factored into
small primes, then the DLP can be computes easily. Therefore, we usually choose a point P
with large prime order. As the order of P divides the order of E(Fq), this forces us to find
elliptic curves E with E(Fq) divisible by a large prime. This requirement raises the question
of how to count the number of points of a given elliptic curve. the first polynomial-time
algorithm for counting the number of Fq-rational points of a given elliptic curve over Fq was
designed by Schoof and improved later by Elkies-Atkin (we will see this algorithm in Lecture
7).

Consider an elliptic curve E ∶ y2 = x3 +Ax +B for some A,B ∈ Fq with 4A3 + 27B2 ≠ 0.
Choose a point P ∈ E(Fq) such that the order n of P is a large prime, which is bigger than
p. Choose a random integer d and compute the point Q = [d]P . All parameters except
d are public, while the discrete logarithm d is kept secret. To sign a message m ∈ Z/nZ,
we choose a random k ∈ (Z/nZ)∗ and compute [k]P = (x1, y1). Put r = x1 and compute
s ∶= k−1(m + dr) ∈ Z/nZ. The pair (r, s) is the signature of the message m. To verify the
signature, we do the following:

i) Compute w = s−1 ∈ Z/nZ (note that if s = 0, we choose another random k until we get
s ≠ 0).

ii) Compute u1 =mw mod n and u2 = rw mod n.
iii) Compute X = [u1]P ⊕ [u2]Q;
iv) if X = 0, then reject the signature, otherwise compute v = x2 mod n.
v) Accept the signature if an only if v = r.
The above scheme works properly. Indeed, if a signature (r, s) on a message m was

generated, then s = k−1(m + dr) mod n. Rearranging gives

k ≡ s−1(m + dr) ≡ wm +wrd ≡ u1 + u2d mod n.

Thus, X = [u1]P ⊕ [u2]Q = [u1 + u2d]P = [k]P , and so v = r as required.
We will not discuss it today, but there are also higher genus curves cryptosystems. It was

proved that genus greater or equal than 4 were not safe enough, genus 3 can be theoretically
broken, but genus 2, for so many reason that I am not going to explain, are a really good
alternative to elliptic curve cryptosystems.

4 Exercises

Exercise 4.1. Suppose that the following 40-letter alphabet is used for all plaintexts and
ciphertexts: A-Z with numerical equivalents 0 − 25, blank= 26, . = 27, ? = 28, $ = 29, the
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numerals 0−9 with numerical equivalents 30−39. Suppose that plaintext message has values
k = 2, l = 3,402 < n < 403.

a) Send the message ”SEND $7500” to a user whose enciphering key is (n, e) = (2047,179).
b) Break the code by factoring n and then computing the deciphering key (n, d).
c) Explain why, even without factoring n, a codebreaker could find the deciphering key

rather quickly. In other words, why is (in addition to its small size) 2047 a particularly bad
choice for n?

Exercise 4.2. Look for the Polish-Hellman method and compute for p = 19 the discrete
logarithm L2(14).

Exercise 4.3. Compute the order of the point (0,0) in E ∶ y2 + y = x3 + x/F7.

Exercise 4.4. Consider the elliptic curve E ∶ y2 = x3 + x + 4 defined over F23. We have
#E(F23) = 29. It is clear that P = (0,2) is a point on the curve, and moreover, it generates
all the F23-rational points. Sign a message m = 10 and verify the signature.
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