MARKOV CHAINS AND APPLICATIONS, MAIN EXAM

Exam 31/01/2024 (max 100 points)

(1) [20 points]

Let $(X_n)_{n \in \mathbb{N}_0}$ be an irreducible Markov chain on a finite state or countable space S.

- (a) Show that either all states are recurrent or all the states are transient.
- (b) Show that if a state $i \in S$ is transient, then $\sum_{n} p_{ii}^{n} \to 0$, as $n \to \infty$.
- (2) [20 points]
 - (a) State the definition of irreducibility for discrete time Markov chains.
 - (b) Consider the Markov chain $(X_n)_{n \in \mathbb{N}_0}$, with state space $S = \{0, 1\}$, and with matrix of transition probabilities P given by

$$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

Is this chain irreducible? Justify your answer.

Are the states recurrent or transient? Justify your answer.

- (c) Let the initial distribution μ_0 be given by $\mu_0 = (3/7 \ 4/7)$. For each $n \ge 1$, determine $\mathbb{P}(X_n = 0)$.
- (3) [20 points]
 - (a) Let $(Y_n, n \in \mathbb{N})$ be a sequence of independent identically distributed random variables such that $\mathbb{P}(Y = -1) = \mathbb{P}(Y = +1) = \frac{1}{2}$ where Y is an element of the sequence $(Y_n, n \in \mathbb{N})$. Define $S_0 := 0$ and $S_n := \sum_{i=1}^n Y_i$ for $n \in \mathbb{N}$. Decide whether the process $S = (S_n, n \in \mathbb{N}_0)$ is a homogeneous discrete-time Markov chain with state space \mathbb{Z} or not. Justify your answer.
 - (b) Provided that the answer to Q3(a) is affirmative, consider the state $0 \in \mathbb{Z}$. Is this state recurrent or transient? Justify your answer.

(4) [20 points] Let $X = (X_t)_{t\geq 0}$ be a homogeneous, continuous-time Markov chain with countable state space S. Suppose $X_0 = i$ for some $i \in S$. Let T_i denote the first time the process X moves away from state i. Show that T_i satisfies the memory-less property. That is, show that for all $s, t \geq 0$,

$$\mathbb{P}(T_i > s + t | T_i > s) = \mathbb{P}(T_i > t).$$

(5) [20 points] Suppose that each bacteria in a group of bacteria either splits into two new bacteria after an exponentially distributed time with parameter λ , or dies after an exponentially distributed time with parameter μ .

- (a) Describe this as a birth-death process. What are the birth rates λ_i , and what are the death rates μ_i ?
- (b) Find a stationary distribution. Justify your answer.