Fourier Analysis 2022/2023

Lecturer: Francesca Arici, Dimitris Gerontogiannis
Assistants: Jack Thelin af Ekenstam, Yufan Ge

Exam 7 July 2023, from 13:15 to 16:15.
Contains 5 questions for 90 points.

Instructions

You can answer the questions in English or in Dutch. If your choice is Dutch, please feel free to use English terminology when convenient.

- If you use results from the book or from the homework sheets, formulate clearly what you are using and where it can be found.
- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Hints are provided for convenience, you can choose to use or not use them.
- This exam contains 5 questions for 90 points on 4 pages.
- The final grade equals as $1+$ total points $/ 10$.

We recommend you use the following convention for the Fourier transform on $\mathcal{S}(\mathbb{R})$:

$$
\mathcal{F}(f)(\xi)=\widehat{f}(\xi)=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x
$$

1. Let $f \in L^{1}(\mathbb{T})$. Show that the following statements hold.
(a) (8 points) If f is even, then $\widehat{f}(k)=\widehat{f}(-k)$ for every $k \in \mathbb{Z}$. On the other hand, if f is odd, then $\widehat{f}(k)=-\widehat{f}(-k)$ for every $k \in \mathbb{Z}$.

Solution: Let f be even, we have

$$
\begin{aligned}
\widehat{f}(-k) & =\int_{\mathbb{T}} f(x) e^{-i(-k) x} d x \\
& =\int_{x>0} f(x) e^{i k x} d x+\int_{x<0} f(x) e^{i k x} d x \\
& =\int_{x>0} f(-x) e^{i k x} d x+\int_{x<0} f(-x) e^{i k x} d x \\
& =\int_{x<0} f(x) e^{-i k x} d x+\int_{x>0} f(x) e^{-i k x} d x \\
& =\widehat{f}(k) .
\end{aligned}
$$

A similar argument for the case when f is odd.
(b) (10 points) If f attains only real values, then $\overline{\hat{f}(k)}=\widehat{f}(-k)$ for every $k \in \mathbb{Z}$. Conversely, if f is continuous and $\widehat{\widehat{f}(k)}=\widehat{f}(-k)$ for every $k \in \mathbb{Z}$, then f attains only real values.

Solution: For the converse direction, one needs to look at the Fourier coefficients of $f-\bar{f}$ and use the uniqueness of Fourier coefficients.
(c) (15 points) Assume that f is α-Hölder continuous where $0<\alpha \leq 1$: there is a constant $C>0$ such that for every $x, y \in[-\pi, \pi]$ it holds

$$
|f(x)-f(y)| \leq C|x-y|^{\alpha}
$$

Then there is a constant $M>0$ such that for every $k \in \mathbb{Z} \backslash\{0\}$ we have

$$
|\widehat{f}(k)| \leq \frac{M}{|k|^{\alpha}}
$$

Solution: Split the coefficients in sine and cosine and use the condition of being Hölder.
2. Consider the characteristic function $\chi_{[0,1]}:[-\pi, \pi] \rightarrow \mathbb{R}$ as a 2π-periodic function. Define

$$
f:=\chi_{[0,1]} * \chi_{[0,1]} .
$$

(a) (4 points) Compute the partial sums of the Fourier series of $\chi_{[0,1]}$ and f.

Solution: One first computes the convolution product $\chi_{[0,1]} * \chi_{[0,1]}$, which is equal to

$$
f(x)= \begin{cases}x, & x \in(0,1] \\ 2-x, & x \in(1,2] \\ 0, & \text { otherwise }\end{cases}
$$

Using the property of Fourier coefficients, we have $\widehat{\chi * \chi}=\widehat{\chi} \cdot \widehat{\chi}$, therefore we have

$$
\widehat{\chi}_{[0,1]}(k)=\int_{0}^{1} e^{-i k x} d x=\frac{1-e^{-i k}}{i k,}
$$

which implies that $\widehat{f}(k)=\frac{2 e^{-i k}-e^{-2 i k}-1}{k^{2}}$, with which one can write the partial sum of the Fourier series.
(b) (8 points) Examine the point-wise convergence of the Fourier series of $\chi_{[0,1]}:[-\pi, \pi] \rightarrow \mathbb{R}$ and compute the limits when it makes sense.

Solution: We use the theorem by Dini (Lecture 4). Fix $x \in[-\pi, \pi]$ and consider three cases:

1. $x=0,1$
2. $x \in(0,1)$
3. $x \in[-\pi, \pi] \backslash[0,1]$

In the first case, we set $\beta=1 / 2$. At $x=0$, we have

$$
\int_{0}^{\pi}\left|\frac{\chi_{[0,1]}(0+t)+\chi_{[0,1]}(0-t)}{2}-\frac{1}{2}\right| \frac{d \lambda(t)}{t}=\int_{1}^{\pi} \frac{1}{2} \frac{d \lambda(t)}{t}=\frac{1}{2} \ln (\pi)<\infty
$$

It follows that the Fourier series converges at $x=0$ and that the limit is equal to $1 / 2$. The case $x=1$ can be handled analogously.
For the second case, we take $\beta=1$. Since $(0,1)$ is open, there is a $\delta>0$ such that $(x-\delta, x+\delta) \subseteq$ $(0,1)$. Hence

$$
\begin{aligned}
\int_{0}^{\pi}\left|\frac{\chi_{[0,1]}(x+t)+\chi_{[0,1]}(x-t)}{2}-1\right| \frac{d \lambda(t)}{t} & =\int_{\delta}^{\pi}\left|\frac{\chi_{[0,1]}(x+t)+\chi_{[0,1]}(x-t)}{2}-1\right| \frac{d \lambda(t)}{t} \\
& \leq \int_{\delta}^{\pi} 2 \frac{d \lambda(t)}{t} \\
& <\infty
\end{aligned}
$$

Again, it follows that Fourier series converges at $x \in(0,1)$ but now the limit is equal to 1 . The third case can be handled in the same way as case 2 with $\beta=0$. We conclude that

$$
\lim _{N} S_{N}^{f}(x)= \begin{cases}1, & x \in(0,1) \\ 1 / 2, & x=0,1 \\ 0, & \text { otherwise }\end{cases}
$$

3. (15 points) Let $f \in L^{1}(\mathbb{T})$. Show that the operator $A_{f}: L^{1}(\mathbb{T}) \rightarrow L^{1}(\mathbb{T})$ defined by $A_{f}(g):=f * g$ satisfies

$$
\left\|A_{f}\right\|:=\sup \left\{\left\|A_{f}(g)\right\|_{1}:\|g\|_{1} \leq 1\right\}=\|f\|_{1} .
$$

Hint: Use the Fejér kernel.

Solution: Let $g_{N}=F_{N}$ be the Fejér kernel in the lecture note. Then we have $A_{f}\left(g_{N}\right)=A_{f}\left(F_{N}\right)=$ $\sigma_{N} * f$ and $\left\|\sigma_{N}(f)-f\right\|_{1} \rightarrow 0$ uniformly therefore we have $\left\|A_{f}\right\| \geq\|f\|_{1}$. On the other hand, we have

$$
\begin{aligned}
\left\|A_{f}(g)\right\|_{1} & =\|f * g\|_{1} \\
& =\int_{\mathbb{T}}\left|\int_{\mathbb{T}} f(y) g(x-y) d y\right| d x \\
& \leq \int_{\mathbb{T}} \int_{\mathbb{T}}|f(y)| \cdot|g(x-y)| d y d x \\
& =\int_{\mathbb{T}} \int_{\mathbb{T}}|f(y)| \cdot|g(x-y)| d x d y \\
& =\|f\|_{1} \cdot\|g\|_{1} \Longrightarrow\left\|A_{f}\right\| \leq\|f\|_{1},
\end{aligned}
$$

where the second last equality is due to Fubini.
4. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x e^{-x^{2}}$.
(a) (6 points) Show that the Fourier transform is $\widehat{f}(\xi)=-i \frac{\sqrt{\pi}}{2} \xi e^{-\frac{\xi^{2}}{4}}$.

Solution: Observe that the function $x e^{-x^{2}}$ is the derivative of $-\frac{1}{2} e^{-x^{2}}$. Compute the Fourier transform of $e^{-x^{2}}$ and use $\widehat{g^{\prime}}(\xi)=i \xi \widehat{g}(\xi)$.
(b) (6 points) Calculate

$$
\int_{\mathbb{R}}|(f * f)(x)|^{2} d x
$$

Solution: Use the Plancerel formula.

Hint: You may use that $\int_{\mathbb{R}} e^{-t^{2}} d t=\sqrt{\pi}$ and that $\int_{\mathbb{R}} t^{4} e^{-t^{2}} d t=\frac{3 \sqrt{\pi}}{4}$.
5. Recall that for $u \in \mathcal{S}^{\prime}(\mathbb{R})$, the support of u, denoted $\operatorname{supp}(u)$ is

$$
\operatorname{supp}(u):=\mathbb{R} \backslash \bigcup\{I: u[\varphi]=0 \forall \varphi \in \mathcal{S}(\mathbb{R}): \operatorname{supp}(\varphi) \subseteq I\}
$$

(a) (8 points) Let $u \in \mathcal{S}^{\prime}(\mathbb{R})$ and assume that $\operatorname{supp}(\widehat{u})$ is compact. Find a function $f \in \mathcal{S}(\mathbb{R})$ such that $u * f=u$.

Solution: Take $g \in \mathcal{S}(\mathbb{R})$ such that $g(x)=1$ for all $x \in \operatorname{supp}(\widehat{u})$ and let $f=\widetilde{\widehat{g}}$. Then

$$
\widehat{u * f}[\psi]=u * f[\widehat{\psi}]=u[\widetilde{f} * \widehat{\psi}]=u[\widehat{g} * \widehat{\psi}]=u[\widehat{g \psi}]=\widehat{u}[g \psi]=\widehat{u}[\psi]
$$

Since the Fourier transform is an isomorphism, it follows that $u * f=u$.
(b) (10 points) Use the preceding part to show that if $u \in L^{2}(\mathbb{R})$ and $|\xi| \leq \lambda$ for $\xi \in \operatorname{supp}(\widehat{u})$, then

$$
\left\|u^{\prime}\right\|_{2} \leq C \cdot \lambda \cdot\|u\|_{2},
$$

where C is a constant.
Solution: First note that

$$
\widehat{f}(\xi)=\int \widetilde{\widehat{g}}(x) e^{-i \xi x} d x=\int \widehat{g}(-x) e^{-i \xi x} d x=\int \widehat{g}(x) e^{i \xi x} d x=\widetilde{\widehat{g}}(\xi)=2 \pi g(\xi)
$$

Hence, $\widehat{f}(\xi)=2 \pi$ on $\operatorname{supp}(\widehat{u})$. Now, using (a) and the Plancherel formula, we obtain

$$
\begin{aligned}
\left\|u^{\prime}\right\|_{2}^{2} & =\left\|u * f^{\prime}\right\|_{2}^{2} \\
& =\int\left|u * f^{\prime}(x)\right|^{2} d x \\
& =\left.\frac{1}{2 \pi} \int \widehat{u * f^{\prime}}(\xi)\right|^{2} d \xi \\
& =\frac{1}{2 \pi} \int\left|\widehat{u} \widehat{f^{\prime}}(\xi)\right|^{2} d \xi \\
& =\frac{1}{2 \pi} \int \xi^{2}|\widehat{u}(\xi) \widehat{f}(\xi)|^{2} d \xi \\
& \leq \frac{(2 \pi \lambda)^{2}}{2 \pi} \int|\widehat{u}(\xi)|^{2} d \xi \\
& =(2 \pi \lambda)^{2} \int|u(x)|^{2} d x
\end{aligned}
$$

So $\left\|u^{\prime}\right\|_{2} \leq 2 \pi \cdot \lambda \cdot\|u\|_{2}$.

