Fourier Analysis 2022/2023

Lecturer: Francesca Arici, Dimitris Gerontogiannis Assistants: Jack Thelin af Ekenstam, Yufan Ge

> Exam 7 July 2023, from 13:15 to 16:15. Contains 5 questions for 90 points.

Instructions

You can answer the questions in English or in Dutch. If your choice is Dutch, please feel free to use English terminology when convenient.

- If you use results from the book or from the homework sheets, formulate clearly what you are using and where it can be found.
- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Hints are provided for convenience, you can choose to use or not use them.
- This exam contains 5 questions for 90 points on 4 pages.
- The final grade equals as 1 + total points/10.

We recommend you use the following convention for the Fourier transform on $\mathcal{S}(\mathbb{R})$:

$$\mathcal{F}(f)(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) dx.$$

- 1. Let $f \in L^1(\mathbb{T})$. Show that the following statements hold.
 - (a) (8 points) If f is even, then $\hat{f}(k) = \hat{f}(-k)$ for every $k \in \mathbb{Z}$. On the other hand, if f is odd, then $\hat{f}(k) = -\hat{f}(-k)$ for every $k \in \mathbb{Z}$.

Solution: Let f be even, we have

$$\begin{split} \widehat{f}(-k) &= \int_{\mathbb{T}} f(x) e^{-i(-k)x} dx \\ &= \int_{x>0} f(x) e^{ikx} dx + \int_{x<0} f(x) e^{ikx} dx \\ &= \int_{x>0} f(-x) e^{ikx} dx + \int_{x<0} f(-x) e^{ikx} dx \\ &= \int_{x<0} f(x) e^{-ikx} dx + \int_{x>0} f(x) e^{-ikx} dx \\ &= \widehat{f}(k). \end{split}$$

A similar argument for the case when f is odd.

(b) (10 points) If f attains only real values, then $\overline{\widehat{f}(k)} = \widehat{f}(-k)$ for every $k \in \mathbb{Z}$. Conversely, if f is continuous and $\overline{\widehat{f}(k)} = \widehat{f}(-k)$ for every $k \in \mathbb{Z}$, then f attains only real values.

Solution: For the converse direction, one needs to look at the Fourier coefficients of $f - \overline{f}$ and use the uniqueness of Fourier coefficients.

(c) (15 points) Assume that f is α -Hölder continuous where $0 < \alpha \leq 1$: there is a constant C > 0 such that for every $x, y \in [-\pi, \pi]$ it holds

$$|f(x) - f(y)| \le C|x - y|^{\alpha}$$

Then there is a constant M > 0 such that for every $k \in \mathbb{Z} \setminus \{0\}$ we have

$$|\widehat{f}(k)| \le \frac{M}{|k|^{\alpha}}.$$

Solution: Split the coefficients in sine and cosine and use the condition of being Hölder.

2. Consider the characteristic function $\chi_{[0,1]}: [-\pi,\pi] \to \mathbb{R}$ as a 2π -periodic function. Define

$$f := \chi_{[0,1]} * \chi_{[0,1]}.$$

(a) (4 points) Compute the partial sums of the Fourier series of $\chi_{[0,1]}$ and f.

Solution: One first computes the convolution product $\chi_{[0,1]} * \chi_{[0,1]}$, which is equal to

$$f(x) = \begin{cases} x, & x \in (0, 1] \\ 2 - x, & x \in (1, 2] \\ 0, & \text{otherwise} \end{cases}$$

Using the property of Fourier coefficients, we have $\widehat{\chi * \chi} = \widehat{\chi} \cdot \widehat{\chi}$, therefore we have

$$\widehat{\chi}_{[0,1]}(k) = \int_0^1 e^{-ikx} dx = \frac{1 - e^{-ik}}{ik,}$$

which implies that $\hat{f}(k) = \frac{2e^{-ik}-e^{-2ik}-1}{k^2}$, with which one can write the partial sum of the Fourier series.

(b) (8 points) Examine the point-wise convergence of the Fourier series of $\chi_{[0,1]} : [-\pi,\pi] \to \mathbb{R}$ and compute the limits when it makes sense.

Solution: We use the theorem by Dini (Lecture 4). Fix $x \in [-\pi, \pi]$ and consider three cases:

1. x = 0, 12. $x \in (0, 1)$

3.
$$x \in [-\pi, \pi] \setminus [0, 1]$$

In the first case, we set $\beta = 1/2$. At x = 0, we have

$$\int_0^{\pi} \left| \frac{\chi_{[0,1]}(0+t) + \chi_{[0,1]}(0-t)}{2} - \frac{1}{2} \right| \frac{d\lambda(t)}{t} = \int_1^{\pi} \frac{1}{2} \frac{d\lambda(t)}{t} = \frac{1}{2} \ln(\pi) < \infty.$$

It follows that the Fourier series converges at x = 0 and that the limit is equal to 1/2. The case x = 1 can be handled analogously.

For the second case, we take $\beta = 1$. Since (0, 1) is open, there is a $\delta > 0$ such that $(x - \delta, x + \delta) \subseteq (0, 1)$. Hence

$$\begin{split} \int_{0}^{\pi} \left| \frac{\chi_{[0,1]}(x+t) + \chi_{[0,1]}(x-t)}{2} - 1 \right| \frac{d\lambda(t)}{t} &= \int_{\delta}^{\pi} \left| \frac{\chi_{[0,1]}(x+t) + \chi_{[0,1]}(x-t)}{2} - 1 \right| \frac{d\lambda(t)}{t} \\ &\leq \int_{\delta}^{\pi} 2 \frac{d\lambda(t)}{t} \\ &\leq \infty \end{split}$$

Again, it follows that Fourier series converges at $x \in (0, 1)$ but now the limit is equal to 1. The third case can be handled in the same way as case 2 with $\beta = 0$. We conclude that

$$\lim_{N} S_{N}^{f}(x) = \begin{cases} 1, & x \in (0,1) \\ 1/2, & x = 0,1 \\ 0, & \text{otherwise} \end{cases}.$$

3. (15 points) Let $f \in L^1(\mathbb{T})$. Show that the operator $A_f : L^1(\mathbb{T}) \to L^1(\mathbb{T})$ defined by $A_f(g) := f * g$ satisfies

$$||A_f|| := \sup \{ ||A_f(g)||_1 : ||g||_1 \le 1 \} = ||f||_1.$$

Hint: Use the Fejér kernel.

Solution: Let $g_N = F_N$ be the Fejér kernel in the lecture note. Then we have $A_f(g_N) = A_f(F_N) = \sigma_N * f$ and $\|\sigma_N(f) - f\|_1 \to 0$ uniformly therefore we have $\|A_f\| \ge \|f\|_1$. On the other hand, we have

$$\begin{split} A_f(g)\|_1 &= \|f * g\|_1 \\ &= \int_{\mathbb{T}} |\int_{\mathbb{T}} f(y)g(x-y)dy|dx \\ &\leq \int_{\mathbb{T}} \int_{\mathbb{T}} |f(y)| \cdot |g(x-y)|dydx \\ &= \int_{\mathbb{T}} \int_{\mathbb{T}} |f(y)| \cdot |g(x-y)|dxdy \\ &= \|f\|_1 \cdot \|g\|_1 \implies \|A_f\| \le \|f\|_1, \end{split}$$

where the second last equality is due to Fubini.

||.

- 4. Consider the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = xe^{-x^2}$.
 - (a) (6 points) Show that the Fourier transform is $\widehat{f}(\xi) = -i\frac{\sqrt{\pi}}{2}\xi e^{-\frac{\xi^2}{4}}$.

Solution: Observe that the function xe^{-x^2} is the derivative of $-\frac{1}{2}e^{-x^2}$. Compute the Fourier transform of e^{-x^2} and use $\hat{g'}(\xi) = i\xi\hat{g}(\xi)$.

(b) (6 points) Calculate

$$\int_{\mathbb{R}} |(f * f)(x)|^2 dx.$$

Solution: Use the Plancerel formula.

Hint: You may use that $\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi}$ and that $\int_{\mathbb{R}} t^4 e^{-t^2} dt = \frac{3\sqrt{\pi}}{4}$.

5. Recall that for $u \in \mathcal{S}'(\mathbb{R})$, the support of u, denoted $\operatorname{supp}(u)$ is

$$\operatorname{supp}(u) := \mathbb{R} \setminus \bigcup \{ I : u[\varphi] = 0 \ \forall \varphi \in \mathcal{S}(\mathbb{R}) : \operatorname{supp}(\varphi) \subseteq I \}.$$

(a) (8 points) Let $u \in \mathcal{S}'(\mathbb{R})$ and assume that $\operatorname{supp}(\widehat{u})$ is compact. Find a function $f \in \mathcal{S}(\mathbb{R})$ such that u * f = u.

Solution: Take $g \in \mathcal{S}(\mathbb{R})$ such that g(x) = 1 for all $x \in \text{supp}(\widehat{u})$ and let $f = \widetilde{\widehat{g}}$. Then

$$\widehat{u*f}[\psi] = u*f[\widehat{\psi}] = u[\widetilde{f}*\widehat{\psi}] = u[\widehat{g}*\widehat{\psi}] = u[\widehat{g}\psi] = \widehat{u}[g\psi] = \widehat{u}[\psi].$$

Since the Fourier transform is an isomorphism, it follows that u * f = u.

(b) (10 points) Use the preceding part to show that if $u \in L^2(\mathbb{R})$ and $|\xi| \leq \lambda$ for $\xi \in \operatorname{supp}(\widehat{u})$, then

$$\|u'\|_2 \le C \cdot \lambda \cdot \|u\|_2$$

where C is a constant.

Solution: First note that

$$\widehat{f}(\xi) = \int \widetilde{\widehat{g}}(x) e^{-i\xi x} dx = \int \widehat{g}(-x) e^{-i\xi x} dx = \int \widehat{g}(x) e^{i\xi x} dx = \widetilde{\widehat{g}}(\xi) = 2\pi g(\xi).$$

Hence, $\hat{f}(\xi) = 2\pi$ on supp (\hat{u}) . Now, using (a) and the Plancherel formula, we obtain

$$\begin{split} \|u'\|_{2}^{2} &= \|u * f'\|_{2}^{2} \\ &= \int |u * f'(x)|^{2} dx \\ &= \frac{1}{2\pi} \int |\widehat{u * f'}(\xi)|^{2} d\xi \\ &= \frac{1}{2\pi} \int |\widehat{u}\widehat{f'}(\xi)|^{2} d\xi \\ &= \frac{1}{2\pi} \int \xi^{2} |\widehat{u}(\xi)\widehat{f}(\xi)|^{2} d\xi \\ &\leq \frac{(2\pi\lambda)^{2}}{2\pi} \int |\widehat{u}(\xi)|^{2} d\xi \\ &= (2\pi\lambda)^{2} \int |u(x)|^{2} dx. \end{split}$$

So $||u'||_2 \le 2\pi \cdot \lambda \cdot ||u||_2$.