Fourier Analysis 2022/2023

Lecturer: Francesca Arici, Dimitris Gerontogiannis Assistants: Jack Thelin af Ekenstam, Yufan Ge

Exam 16 June 2023, from 13:15 to 16:15. Contains 5 questions for 99 points.

Instructions

You can answer the questions in English or in Dutch. If your choice is Dutch, please feel free to use English terminology when convenient.

- If you use results from the book or from the homework sheets, formulate clearly what you are using and where it can be found.
- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Hints are provided for convenience, you can choose to use or not use them.
- This exam contains 5 questions for 99 points on 8 pages. The final grade equals as 1+total points/11.

We recommend you use the following convention for the Fourier transform on $\mathcal{S}(\mathbb{R})$:

$$\mathcal{F}(f)(\xi) = \widehat{f}(\xi) = \int_{\mathbb{R}} e^{-ix\xi} f(x) dx.$$

1. (a) (5 points) Denote by $C^1(\mathbb{T}, \mathbb{R})$ the space of real-valued 2π periodic C^1 -functions. Suppose that $f \in C^1(\mathbb{T}, \mathbb{R})$ satisfies $\int_{\mathbb{T}} f(t) d\lambda(t) = 0$. Show that

$$\int_{\mathbb{T}} |f(t)|^2 d\lambda(t) \le \int_{\mathbb{T}} |f'(t)|^2 d\lambda(t).$$

(b) (10 points) Prove that equality holds if and only if there are constants $c_1, c_2 \in \mathbb{R}$ such that $f(t) = c_1 \sin(t) + c_2 \cos(t)$.

Hint: Use Parseval's identity.

Solution:

Noting that $\widehat{f'}(n) = in\widehat{f}(n)$ and applying Parseval's identity to f and f' yields

$$\frac{1}{2\pi} \int |f(x)|^2 dx = \sum_{n \neq 0} |\widehat{f}(n)|^2, \quad \frac{1}{2\pi} \int |f'(x)|^2 dx = \sum_{n \neq 0} n^2 |\widehat{f}(n)|^2.$$

Hence

$$\int |f(x)|^2 dx = 2\pi \sum_{n \neq 0} |\widehat{f}(n)|^2 \le 2\pi \sum_{n \neq 0} n^2 |\widehat{f}(n)|^2 = \int |f'(x)|^2 dx.$$

Now, assume $\int |f(x)|^2 dx = \int |f'(x)|^2 dx$. Again, we note that $\widehat{f}'(n) = in\widehat{f}(n)$ and using Parseval's identity, we conclude that

$$\sum_{n \neq 0} |\widehat{f}(n)|^2 = \frac{1}{2\pi} \int |f(x)|^2 dx = \frac{1}{2\pi} \int |f'(x)|^2 dx = \sum_{n \neq 0} n^2 |\widehat{f}(n)|^2.$$
 (1)

Towards a contradiction, suppose that $\hat{f}(k) \neq 0$ for some |k| > 1, then

$$k^2 > 1 \implies k^2 |\widehat{f}(k)|^2 > |\widehat{f}(k)|^2.$$

It follows that

$$\sum_{n \neq 0, k} |\widehat{f}(n)|^2 + |\widehat{f}(k)|^2 < \sum_{n \neq 0, k} n^2 |\widehat{f}(n)|^2 + k^2 |\widehat{f}(k)|^2,$$

which contradicts equation (1). So the only Fourier coefficients of f that may be nonzero are $\widehat{f}(1)$ and $\widehat{f}(-1)$. By uniqueness of Fourier series (Lecture 4), f is given by $f(x) = \widehat{f}(1)e^{ix} + \widehat{f}(-1)e^{-ix}$. Rewriting f in the basis $\{\sin(nx), \cos(nx)\}_{n\in\mathbb{N}}$, we have $f(x) = c_1\cos(x) + c_2\sin(x)$, where

$$c_1 = \frac{1}{\pi} \int f(x) \cos(x) dx$$
, $c_2 = \frac{1}{\pi} \int f(x) \sin(x) dx$

are clearly real numbers. Alternatively, you may note that $\widehat{f}(-1) = \overline{\widehat{f}(1)}$ and use Euler's identity to write $\widehat{f}(1)e^{ix} + \widehat{f}(-1)e^{-ix}$ in the desired form.

- 2. Let $f \in L^1(\mathbb{T})$. Show the following.
 - (a) (5 points) For every $x \in \mathbb{T}$ and $N \in \mathbb{N}$ the Cesàro mean $\sigma_N(f)$ can be written as

$$\sigma_N(f)(x) = \sum_{k=-(N-1)}^{N-1} \left(1 - \frac{|k|}{N}\right) \widehat{f}(k)e^{ikx}.$$

Solution: This is the rewriting of the Cesàro mean: Firstly we have

$$s_N(f)(x) = \sum_{k=-N}^{N} \widehat{f}(k)e^{ikx}.$$

Then the Cesàro mean is the following:

$$\begin{split} \sigma_N &= \frac{1}{N} \sum_{k=0}^{N-1} s_k(f) \\ &= \frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{inx} \\ &= \frac{1}{N} (\widehat{f}(0) e^{i \cdot 0 \cdot x} + \widehat{f}(-1) e^{i \cdot (-1) \cdot x} + \widehat{f}(0) e^{i \cdot 0 \cdot x} + \widehat{f}(1) e^{i \cdot 1 \cdot x} + \dots + \widehat{f}(N-1) e^{i \cdot (N-1) \cdot x} \\ &= \frac{1}{N} (N \cdot \widehat{f}(0) e^{i \cdot 0 \cdot x} + (N-1) \widehat{f}(-1) e^{-ix}) + (N-1) \widehat{f}(1) e^{ix} + \dots + \widehat{f}(N-1) e^{i(N-1)x} \\ &= \sum_{k=-(N-1)}^{N-1} (\frac{N-|k|}{N}) \widehat{f}(k) e^{ikx} \\ &= \sum_{k=-(N-1)}^{N-1} (1 - \frac{|k|}{N}) \widehat{f}(k) e^{ikx}. \end{split}$$

(b) (15 points) If $\int_{\mathbb{T}} f(t) d\lambda(t) = 0$, define the 2π -periodic function $g: [-\pi, \pi] \to \mathbb{C}$ as

$$g(x) = \int_{-\pi}^{x} f(t)d\lambda(t).$$

It is 2π -periodic since $g(-\pi) = g(\pi)$ (this does not need to be proved). Prove that

1. g is continuous and hence a function in $C(\mathbb{T})$;

Solution: Since $C_c(\mathbb{T})$ is dense in $L^1(\mathbb{T})$ (with respect to L^1 -norm) and by the compactness of \mathbb{T} we have $C_c(\mathbb{T}) = C(\mathbb{T})$. Then for any $\epsilon > 0$, find $h \in C(\mathbb{T})$ such that $||h - f||_1 \le \epsilon$. We have the following estimate:

$$\begin{split} |g(x+\Delta x)-g(x)| &= |\int_x^{x+\Delta x} f(t) d\lambda(t)| \\ &= |\int_x^{x+\Delta x} f(t) - h(t) + h(t) d\lambda(t)| \\ &\leq |\int_x^{x+\Delta x} h(t) d\lambda(t)| + \|f-h\|_1 \\ &\leq \sup_{x\in \mathbb{T}} |h(t)| \cdot \Delta x + \epsilon \to \epsilon \end{split}$$

Since this holds for arbitrarily small ϵ , we prove the continuity of g.

2. $\widehat{f}(k) = ik\widehat{g}(k)$ for every $k \in \mathbb{Z}$.

Solution:

Let $\{f_n\}$ be the sequence of continuous functions on \mathbb{T} that converges to f in L^1 norm (therefore $\widehat{f}_n(k)$ converges to $\widehat{f}(k)$ uniformly for each $k \in \mathbb{Z}$). By compactness of \mathbb{T} (or the fact that \mathbb{T} has finite measure), define $g_n(x) := \int_{-\pi}^x f_n(t) d\lambda(t)$, we have that $g_n(x)$

converges to g(x) in L^1 norm as well. Indeed, we have

$$||g - g_n||_1 = \int_{\mathbb{T}} |\int_{-\pi}^x f_n(t) - f(t) d\lambda(t)| d\lambda(x)$$

$$\leq \int_{\mathbb{T}} |\int_{-\pi}^x |f_n(t) - f(t)| d\lambda(t)| d\lambda(x)$$

$$= 2\pi ||f_n - f||_1 \to 0.$$

Since f_n is continuous, we have g_n is continuously differentiable and $g'_n = f_n$. By the property of Fourier coefficient of derivative, we have $\widehat{f}_n(k) = ik\widehat{g}_n(k)$. Since L^1 convergence implies the uniform convergence of the Fourier coefficient, we have

$$\widehat{f}(k) = \lim_{n} \widehat{f}_n(k) = \lim_{n} ik\widehat{g}_n(k) = ik\widehat{g}(k).$$

(c) (10 points) If $\int_{\mathbb{T}} f(t)d\lambda(t) = 0$ and $\widehat{f}(k) = -\widehat{f}(-k) \ge 0$ for every $k \in \mathbb{Z}$, then it holds that

$$\sum_{k=1}^{\infty} \frac{1}{k} \widehat{f}(k) < \infty.$$

Hint: Use parts (a) and (b) together with Fejér's Theorem on the function g defined from f as in part (b).

Solution: Since g is continuous, we can apply Fejér's theorem for g:

$$\lim_{N} \sigma_N(g)(x) = g(x) < \infty.$$

To prove the desired inequality, we estimate the following:

$$\begin{split} \sigma_N(g)(0) &= \sum_{k=-(N-1)}^{N-1} (1 - \frac{|k|}{N}) \widehat{g}(k) e^{i \cdot k \cdot 0} \\ &= \widehat{g}(0) + \sum_{k=-(N-1)}^{N-1, k \neq 0} (1 - \frac{|k|}{N}) \frac{1}{ik} \widehat{f}(k) \\ &= \widehat{g}(0) + 2 \sum_{k=1}^{N-1} (1 - \frac{|k|}{N}) \frac{1}{ik} \widehat{f}(k) \\ &= \widehat{g}(0) + 2 \sum_{k=1}^{N-1} \frac{1}{ik} \widehat{f}(k) - \frac{2}{iN} \sum_{k=1}^{N-1} \widehat{f}(k). \end{split}$$

Since $\widehat{f}(k) \to 0$ we have $\forall \epsilon > 0$, there exists $N_{\epsilon} > 0$ such that $|\widehat{f}(k)| \le \epsilon$ for all $k \ge N_{\epsilon}$. Let $M = \max_{k \le N_{\epsilon}} |\widehat{f}(k)|$, we then have

$$g(0) = \lim_{N} \frac{1}{N} \sum_{k=1}^{N} \widehat{f}(k) \le \lim_{N} \frac{N_{\epsilon} \cdot M}{N} + \frac{\epsilon \cdot (N - N_{\epsilon})}{N} = \epsilon,$$

which holds for arbitrarily small ϵ . Therefore, we have

$$\lim_{N} \sigma_{N}(g)(0) = \lim_{N} (\widehat{g}(0) + 2\sum_{k=1}^{N-1} \frac{1}{ik} \widehat{f}(k) + \frac{2}{iN} \sum_{k=1}^{N-1} \widehat{f}(k)) = \widehat{g}(0) + 2\sum_{k=1}^{\infty} \frac{1}{ik} \widehat{f}(k),$$

which implies that

$$|\sum_{k=1}^{\infty}\frac{1}{ik}\widehat{f}(k)|=\sum_{k=1}^{\infty}\frac{1}{k}\widehat{f}(k)=|\frac{g(0)-\widehat{g}(0)}{2}|<\infty.$$

3. Consider the tempered distribution induced by the function

$$f(x) = |x^2 - 2|.$$

(a) (4 points) Compute its Fourier transform;

Solution: Observe that the function $f(x) = |x^2 - 2|$ can be rewritten as the following:

$$(x^2-2)(1+2H(x-\sqrt{2})-2H(x+\sqrt{2})),$$

where the function H(x) is the Heaviside function introduced either in the lecture note or in the assignment.

Since the Fourier transform of the distribution is given by $\widehat{F}(f) := F(\widehat{f})$, we have

$$\begin{split} \widehat{F}_f(g) &= \int_{\mathbb{R}} |x^2 - 2| \widehat{g} dx \\ &= \int_{\mathbb{R}} (x^2 - 2) (1 + 2H(x - \sqrt{2}) - 2H(x + \sqrt{2})) \widehat{g} dx \\ &= \int_{\mathbb{R}} (x^2 - 2) \widehat{g} dx + \int_{\mathbb{R}} (2H(x - \sqrt{2}) - 2H(x + \sqrt{2})) (x^2 - 2) \widehat{g} dx \\ &= \int_{\mathbb{R}} -\widehat{g''} - 2\widehat{g} dx + \int_{\mathbb{R}} (2H(x - \sqrt{2}) - 2H(x + \sqrt{2})) (-\widehat{g''} - 2\widehat{g}) dx \\ &= \int_{\mathbb{R}} -\widehat{g''} - 2\widehat{g} dx + F_{2H(x - \sqrt{2}) - 2H(x + \sqrt{2})} (-\widehat{g''} - 2g). \end{split}$$

Since $2H(x-\sqrt{2})-2H(x+\sqrt{2})$ is L^1 function, we have for L^1 functions f, $\widehat{F}_f(g)=F_{\widehat{f}}(g)$. Therefore, we have by using the Fourier inversion formula:

$$\widehat{F}_f(g) = -2\pi(g''(0) + 2g(0)) + F_{2H(x-\sqrt{2}-2H(\sqrt{x+\sqrt{2}}))}(g).$$

(b) (5 points) Compute its second derivative in the sense of distributions.

Solution: This exercise is to check if students understand the Leibniz rule for distributions: (XF)' = X'F + XF' when X is a multiplicator.

Note that $(F_H)' = \delta$ where H is the Heaviside function.

$$F' = 2x(1 + 2H(x - \sqrt{2}) - 2H(x + \sqrt{2})) + (x^2 - 2)(2\delta(x - \sqrt{2}) - 2\delta(x + \sqrt{2})).$$

Therefore we have

$$F'' = 2(1 + 2H(x - \sqrt{2}) - 2H(x + \sqrt{2}))$$
$$+4x(2\delta(x - \sqrt{2}) - 2\delta(x + \sqrt{2}))$$
$$+2(x^2 - 2)(2\delta(x - \sqrt{2}) - 2\delta(x + \sqrt{2})) \circ \frac{d}{dx}$$

- 4. Consider the operator $\Phi: \mathcal{S}(\mathbb{R}) \to \mathcal{S}(\mathbb{R})$ given by $\Phi f = \frac{1}{\sqrt{2\pi}} \widehat{f}$.
 - (a) (5 points) Show that $\Phi^4 = 1$, the identity operator on $\mathcal{S}(\mathbb{R})$;

Solution: Take $\psi \in \mathcal{S}(\mathbb{R})$. Recall that $\widehat{\psi} = 2\pi\widetilde{\psi}$, where $\widetilde{\psi}(x) = \psi(-x)$. Therefore,

$$\Phi^{2}(\psi) = \frac{1}{2\pi} \widehat{\psi} = \frac{2\pi}{2\pi} \widetilde{\psi} = \widetilde{\psi}.$$

It follows that

$$\Phi^4(\psi) = \Phi^2(\Phi^2(\psi)) = \Phi^2(\widetilde{\psi}) = \widetilde{\widetilde{\psi}} = \psi,$$

i.e. $\Phi^4(\psi) = \psi$.

(b) (10 points) Show that every $f \in \mathcal{S}(\mathbb{R})$ has a unique decomposition as

$$f = \sum_{k=0}^{3} f_k, \qquad f_k \in \mathcal{S}(\mathbb{R}), \ \Phi(f_k) = i^k f_k.$$

Solution: Fix $f \in \mathcal{S}(\mathbb{R})$ and let

$$f_k = \frac{1}{4} \sum_{n=0}^{3} i^{-nk} \Phi^n(f).$$

We have

$$\sum_{k=0}^{3} f_k = \frac{1}{4} [f(1+1+1+1) + \Phi(f)(1+i^{-1}+i^{-2}+i^{-3}) + \Phi^2(f)(1+i^{-2}+1+i^{-2}) + \Phi^3(f)(1+i^{-3}+i^{-2}+i^{-1})]$$

$$= f + 0 + 0 + 0$$

$$= f$$

and

$$\Phi(f_k) = \Phi\left(\frac{1}{4}\sum_{n=0}^{3} i^{-nk}\Phi^n(f)\right)
= \frac{1}{4}\sum_{n=0}^{3} i^{-nk}\Phi^{n+1}(f)
= \frac{i^k}{4}\sum_{n=0}^{3} i^{-(n+1)k}\Phi^{n+1}(f)
= \frac{i^k}{4}\sum_{m=1}^{4} i^{-mk}\Phi^m(f)
= \frac{i^k}{4}\sum_{m=0}^{3} i^{-mk}\Phi^m(f)
= i^k f_k.$$

(c) (5 points) Show that the differential operator L(f)(x) = xf(x) + f'(x) satisfies

$$L\mathcal{F}(f) = i\mathcal{F}(L(f)),$$

and prove that $\Phi L(f_k) = i^{k+1}L(f_k)$ for the f_k 's in the decomposition.

Solution: Note that for any $f \in \mathcal{S}(\mathbb{R})$, we have

$$\Phi(L(f)) = \Phi(xf(x) + f'(x)) = i\Phi(f)' + i\xi\Phi(f) = iL(\Phi(f)),$$

by using properties of the Fourier transform. Now, using the property of f_k from (b), it follows that

$$\Phi(L(f_k)) = iL(\Phi(f_k)) = iL(i^k f_k) = i^{k+1}L(f_k).$$

- 5. The following statements manifest that a non-zero function and its Fourier transform cannot be localised simultaneously to arbitrary precision.
 - (a) (10 points) Prove that if a non-zero $f \in C_0(\mathbb{R})$ has compact support, then $\hat{f} \in C_0(\mathbb{R})$ cannot have also compact support. Hint: If you assume that f is compactly supported, you may extend it to a periodic function.

Solution: Towards a contradiction, suppose that f and \hat{f} are both compactly supported. Say supp $f \subseteq [-A, A]$. Viewing f as a function on [-2A, 2A], we may extend it to a 4A-periodic function \tilde{f} . Note that the Fourier coefficients c_n of \tilde{f} are given by

$$c_n = \frac{1}{4A} \int_{-2A}^{2A} \widetilde{f}(x) e^{-2\pi i n x/4A} dx = \frac{1}{4A} \int_{-\infty}^{\infty} f(x) e^{-2\pi i n x/4A} dx = \frac{1}{4A} \widehat{f}(n/4A).$$

Since \widehat{f} is compactly supported $\exists N>0$ such that $\forall n$ with |n|>N, we have $\widehat{f}(n/4A)=0$. Since f, and so also \widetilde{f} , is continuous, uniqueness of Fourier coefficients implies that $\widetilde{f}(x)=\sum_{n=-N}^N c_n e^{-inx}$ is a trigonometric polynomial. However, $\widetilde{f}|_{[A,2A]}=0$, which cannot happen for trigonometric polynomials. Thus, we have reached a contradiction and we conclude that both f and \widehat{f} cannot be compactly supported.

(b) (15 points) Prove Heisenberg's Uncertainty Principle: Let $f \in \mathcal{S}(\mathbb{R}) \subseteq L^2(\mathbb{R})$ and assume for simplicity that it attains only real values and that

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = 1.$$

Then, it holds that

$$\left(\int_{-\infty}^{\infty} x^2 |f(x)|^2 dx\right) \left(\int_{-\infty}^{\infty} \xi^2 |\widehat{f}(\xi)|^2 d\xi\right) \geq \frac{\pi}{2}.$$

Hint: Do integration by parts on $\int_{-\infty}^{\infty} |f(x)|^2 dx$ and then apply the Cauchy–Schwarz inequality for the inner product

$$\langle f, g \rangle_2 = \int_{\mathbb{R}} f(x)g(x)dx.$$

Solution: We compute

$$1 = \int f^2 = \int f^2 x' = [\text{Int. by parts}] = [f^2(x)x]_{-\infty}^{\infty} - 2 \int xff' = 0 - 2\langle xf, f' \rangle.$$

Using Cauchy-Scwartz, we find

$$\frac{1}{4} = |\langle xf, f' \rangle|^2 \le ||xf||^2 ||f'||^2 = \int (xf)^2 \int (f')^2$$

Applying the Plancharel formula to the right factor in the last expression yields

$$\frac{1}{4} \leq \int (xf)^2 \frac{1}{2\pi} \int (\xi \widehat{f})^2 \implies \frac{\pi}{2} \leq \int (xf)^2 \int (\xi \widehat{f})^2$$

References

[1] A. Vretblad, Fourier analysis and its applications, Graduate Texts in Mathematics, 223, Springer-Verlag, New York, 2003. MR1992764