
Fourier Analysis 2022/2023

Lecturer: Francesca Arici, Dimitris Gerontogiannis
Assistants: Jack Thelin af Ekenstam, Yufan Ge

Exam 16 June 2023, from 13:15 to 16:15.
Contains 5 questions for 99 points.

Instructions

You can answer the questions in English or in Dutch. If your choice is Dutch, please feel free to use English
terminology when convenient.

• If you use results from the book or from the homework sheets, formulate clearly what you are using
and where it can be found.

• You can use the results of the earlier parts of a question, even if you have not solved these parts.

• Hints are provided for convenience, you can choose to use or not use them.

• This exam contains 5 questions for 99 points on 8 pages. The final grade equals as 1+ total points/11.

We recommend you use the following convention for the Fourier transform on S(R):

F(f)(ξ) = f̂(ξ) =

∫
R
e−ixξf(x)dx.

1. (a) (5 points) Denote by C1(T,R) the space of real-valued 2π periodic C1-functions. Suppose that
f ∈ C1(T,R) satisfies

∫
T f(t)dλ(t) = 0. Show that∫

T
|f(t)|2dλ(t) ≤

∫
T
|f ′(t)|2dλ(t).

(b) (10 points) Prove that equality holds if and only if there are constants c1, c2 ∈ R such that f(t) =
c1 sin(t) + c2 cos(t).

Hint: Use Parseval’s identity.

Solution:

Noting that f̂ ′(n) = inf̂(n) and applying Parseval’s identity to f and f ′ yields

1

2π

∫
|f(x)|2dx =

∑
n ̸=0

|f̂(n)|2, 1

2π

∫
|f ′(x)|2dx =

∑
n ̸=0

n2|f̂(n)|2.
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Hence ∫
|f(x)|2dx = 2π

∑
n ̸=0

|f̂(n)|2 ≤ 2π
∑
n ̸=0

n2|f̂(n)|2 =

∫
|f ′(x)|2dx.

Now, assume
∫
|f(x)|2dx =

∫
|f ′(x)|2dx. Again, we note that f̂ ′(n) = inf̂(n) and using Parseval’s

identity, we conclude that∑
n ̸=0

|f̂(n)|2 =
1

2π

∫
|f(x)|2dx =

1

2π

∫
|f ′(x)|2dx =

∑
n ̸=0

n2|f̂(n)|2. (1)

Towards a contradiction, suppose that f̂(k) ̸= 0 for some |k| > 1, then

k2 > 1 =⇒ k2|f̂(k)|2 > |f̂(k)|2.

It follows that ∑
n ̸=0,k

|f̂(n)|2 + |f̂(k)|2 <
∑

n ̸=0,k

n2|f̂(n)|2 + k2|f̂(k)|2,

which contradicts equation (1). So the only Fourier coefficients of f that may be nonzero are f̂(1)

and f̂(−1). By uniqueness of Fourier series (Lecture 4), f is given by f(x) = f̂(1)eix + f̂(−1)e−ix.
Rewriting f in the basis {sin(nx), cos(nx)}n∈N, we have f(x) = c1 cos(x) + c2 sin(x), where

c1 =
1

π

∫
f(x) cos(x)dx, c2 =

1

π

∫
f(x) sin(x)dx

are clearly real numbers. Alternatively, you may note that f̂(−1) = f̂(1) and use Euler’s identity to

write f̂(1)eix + f̂(−1)e−ix in the desired form.

2. Let f ∈ L1(T). Show the following.

(a) (5 points) For every x ∈ T and N ∈ N the Cesàro mean σN (f) can be written as

σN (f)(x) =

N−1∑
k=−(N−1)

(
1− |k|

N

)
f̂(k)eikx.

Solution: This is the rewriting of the Cesàro mean: Firstly we have

sN (f)(x) =

N∑
k=−N

f̂(k)eikx.
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Then the Cesàro mean is the following:

σN =
1

N

N−1∑
k=0

sk(f)

=
1

N

N−1∑
k=0

k∑
n=−k

f̂(n)einx

=
1

N
(f̂(0)ei·0·x + f̂(−1)ei·(−1)·x + f̂(0)ei·0·x + f̂(1)ei·1·x + · · ·+ f̂(N − 1)ei·(N−1)·x

=
1

N
(N · f̂(0)ei·0·x + (N − 1)f̂(−1)e−ix) + (N − 1)f̂(1)eix + · · ·+ f̂(N − 1)ei(N−1)x

=

N−1∑
k=−(N−1)

(
N − |k|
N

)f̂(k)eikx

=

N−1∑
k=−(N−1)

(1− |k|
N

)f̂(k)eikx.

(b) (15 points) If
∫
T f(t)dλ(t) = 0, define the 2π-periodic function g : [−π, π] → C as

g(x) =

∫ x

−π

f(t)dλ(t).

It is 2π-periodic since g(−π) = g(π) (this does not need to be proved). Prove that

1. g is continuous and hence a function in C(T);

Solution: Since Cc(T) is dense in L1(T) (with respect to L1-norm) and by the compactness
of T we have Cc(T) = C(T). Then for any ϵ > 0, find h ∈ C(T) such that ∥h − f∥1 ≤ ϵ.
We have the following estimate:

|g(x+∆x)− g(x)| = |
∫ x+∆x

x

f(t)dλ(t)|

= |
∫ x+∆x

x

f(t)− h(t) + h(t)dλ(t)|

≤ |
∫ x+∆x

x

h(t)dλ(t)|+ ∥f − h∥1

≤ sup
x∈T

|h(t)| ·∆x+ ϵ→ ϵ

Since this holds for arbitrarily small ϵ, we prove the continuity of g.

2. f̂(k) = ikĝ(k) for every k ∈ Z.

Solution:
Let {fn} be the sequence of continuous functions on T that converges to f in L1 norm

(therefore f̂n(k) converges to f̂(k) uniformly for each k ∈ Z). By compactness of T (or
the fact that T has finite measure), define gn(x) :=

∫ x

−π
fn(t)dλ(t), we have that gn(x)
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converges to g(x) in L1 norm as well. Indeed, we have

∥g − gn∥1 =

∫
T
|
∫ x

−π

fn(t)− f(t)dλ(t)|dλ(x)

≤
∫
T
|
∫ x

−π

|fn(t)− f(t)|dλ(t)|dλ(x)

= 2π∥fn − f∥1 → 0.

Since fn is continuous, we have gn is continuously differentiable and g′n = fn. By the

property of Fourier coefficient of derivative, we have f̂n(k) = ikĝn(k). Since L
1 convergence

implies the uniform convergence of the Fourier coefficient, we have

f̂(k) = lim
n
f̂n(k) = lim

n
ikĝn(k) = ikĝ(k).

(c) (10 points) If
∫
T f(t)dλ(t) = 0 and f̂(k) = −f̂(−k) ≥ 0 for every k ∈ Z, then it holds that

∞∑
k=1

1

k
f̂(k) <∞.

Hint: Use parts (a) and (b) together with Fejér’s Theorem on the function g defined from f as in
part (b).

Solution: Since g is continuous, we can apply Fejér’s theorem for g:

lim
N
σN (g)(x) = g(x) <∞.

To prove the desired inequality, we estimate the following:

σN (g)(0) =

N−1∑
k=−(N−1)

(1− |k|
N

)ĝ(k)ei·k·0

= ĝ(0) +

N−1,k ̸=0∑
k=−(N−1)

(1− |k|
N

)
1

ik
f̂(k)

= ĝ(0) + 2

N−1∑
k=1

(1− |k|
N

)
1

ik
f̂(k)

= ĝ(0) + 2

N−1∑
k=1

1

ik
f̂(k)− 2

iN

N−1∑
k=1

f̂(k).

Since f̂(k) → 0 we have ∀ϵ > 0, there exists Nϵ > 0 such that |f̂(k)| ≤ ϵ for all k ≥ Nϵ. Let

M = maxk≤Nϵ
|f̂(k)|, we then have

g(0) = lim
N

1

N

N∑
k=1

f̂(k) ≤ lim
N

Nϵ ·M
N

+
ϵ · (N −Nϵ)

N
= ϵ,

which holds for arbitrarily small ϵ. Therefore, we have

lim
N
σN (g)(0) = lim

N
(ĝ(0) + 2

N−1∑
k=1

1

ik
f̂(k) +

2

iN

N−1∑
k=1

f̂(k)) = ĝ(0) + 2

∞∑
k=1

1

ik
f̂(k),
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which implies that

|
∞∑
k=1

1

ik
f̂(k)| =

∞∑
k=1

1

k
f̂(k) = |g(0)− ĝ(0)

2
| <∞.

3. Consider the tempered distribution induced by the function

f(x) = |x2 − 2|.

(a) (4 points) Compute its Fourier transform;

Solution: Observe that the function f(x) = |x2 − 2| can be rewritten as the following:

(x2 − 2)(1 + 2H(x−
√
2)− 2H(x+

√
2))),

where the function H(x) is the Heaviside function introduced either in the lecture note or in
the assignment.

Since the Fourier transform of the distribution is given by F̂ (f) := F (f̂), we have

F̂f (g) =

∫
R
|x2 − 2|ĝdx

=

∫
R
(x2 − 2)(1 + 2H(x−

√
2)− 2H(x+

√
2)))ĝdx

=

∫
R
(x2 − 2)ĝdx+

∫
R
(2H(x−

√
2)− 2H(x+

√
2))(x2 − 2)ĝdx

=

∫
R
−ĝ′′ − 2ĝdx+

∫
R
(2H(x−

√
2)− 2H(x+

√
2))(−ĝ′′ − 2ĝ)dx

=

∫
R
−ĝ′′ − 2ĝdx+ F2H(x−

√
2)−2H(x+

√
2)(

̂−g′′ − 2g).

Since 2H(x −
√
2) − 2H(x +

√
2) is L1 function, we have for L1 functions f , F̂f (g) = Ff̂ (g).

Therefore, we have by using the Fourier inversion formula:

F̂f (g) = −2π(g′′(0) + 2g(0)) + F ̂
2H(x−

√
2−2H(

√
x+

√
2))

(g).

(b) (5 points) Compute its second derivative in the sense of distributions.

Solution: This exercise is to check if students understand the Leibniz rule for distributions:
(XF )′ = X ′F +XF ′ when X is a multiplicator.

Note that (FH)′ = δ where H is the Heaviside function.

F ′ = 2x(1 + 2H(x−
√
2)− 2H(x+

√
2)) + (x2 − 2)(2δ(x−

√
2)− 2δ(x+

√
2)).

Therefore we have

F ′′ =2(1 + 2H(x−
√
2)− 2H(x+

√
2))

+4x(2δ(x−
√
2)− 2δ(x+

√
2))

+2(x2 − 2)(2δ(x−
√
2)− 2δ(x+

√
2)) ◦ d

dx
.
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4. Consider the operator Φ : S(R) → S(R) given by Φf = 1√
2π
f̂ .

(a) (5 points) Show that Φ4 = 1, the identity operator on S(R);

Solution: Take ψ ∈ S(R). Recall that ̂̂ψ = 2πψ̃, where ψ̃(x) = ψ(−x). Therefore,

Φ2(ψ) =
1

2π
̂̂
ψ =

2π

2π
ψ̃ = ψ̃.

It follows that

Φ4(ψ) = Φ2(Φ2(ψ)) = Φ2(ψ̃) =
˜̃
ψ = ψ,

i.e. Φ4(ψ) = ψ.

(b) (10 points) Show that every f ∈ S(R) has a unique decomposition as

f =

3∑
k=0

fk, fk ∈ S(R), Φ(fk) = ikfk.

Solution: Fix f ∈ S(R) and let

fk =
1

4

3∑
n=0

i−nkΦn(f).

We have
3∑

k=0

fk =
1

4
[f(1 + 1 + 1 + 1)+

Φ(f)(1 + i−1 + i−2 + i−3)+

Φ2(f)(1 + i−2 + 1 + i−2)+

Φ3(f)(1 + i−3 + i−2 + i−1)]

=f + 0 + 0 + 0

=f

and

Φ(fk) = Φ

(
1

4

3∑
n=0

i−nkΦn(f)

)

=
1

4

3∑
n=0

i−nkΦn+1(f)

=
ik

4

3∑
n=0

i−(n+1)kΦn+1(f)

=
ik

4

4∑
m=1

i−mkΦm(f)

=
ik

4

3∑
m=0

i−mkΦm(f)

= ikfk.
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(c) (5 points) Show that the differential operator L(f)(x) = xf(x) + f ′(x) satisfies

LF(f) = iF(L(f)),

and prove that ΦL(fk) = ik+1L(fk) for the fk’s in the decomposition.

Solution: Note that for any f ∈ S(R), we have

Φ(L(f)) = Φ(xf(x) + f ′(x)) = iΦ(f)′ + iξΦ(f) = iL(Φ(f)),

by using properties of the Fourier transform. Now, using the property of fk from (b), it follows
that

Φ(L(fk)) = iL(Φ(fk)) = iL(ikfk) = ik+1L(fk).

5. The following statements manifest that a non-zero function and its Fourier transform cannot be localised
simultaneously to arbitrary precision.

(a) (10 points) Prove that if a non-zero f ∈ C0(R) has compact support, then f̂ ∈ C0(R) cannot have
also compact support. Hint: If you assume that f is compactly supported, you may extend it to
a periodic function.

Solution: Towards a contradiction, suppose that f and f̂ are both compactly supported. Say
supp f ⊆ [−A,A]. Viewing f as a function on [−2A, 2A], we may extend it to a 4A-periodic

function f̃ . Note that the Fourier coefficients cn of f̃ are given by

cn =
1

4A

∫ 2A

−2A

f̃(x)e−2πinx/4Adx =
1

4A

∫ ∞

−∞
f(x)e−2πinx/4Adx =

1

4A
f̂(n/4A).

Since f̂ is compactly supported ∃N > 0 such that ∀n with |n| > N , we have f̂(n/4A) = 0.

Since f , and so also f̃ , is continuous, uniqueness of Fourier coefficients implies that f̃(x) =∑N
n=−N cne

−inx is a trigonometric polynomial. However, f̃ |[A,2A] = 0, which cannot happen
for trigonometric polynomials. Thus, we have reached a contradiction and we conclude that
both f and f̂ cannot be compactly supported.

(b) (15 points) Prove Heisenberg’s Uncertainty Principle: Let f ∈ S(R) ⊆ L2(R) and assume for
simplicity that it attains only real values and that∫ ∞

−∞
|f(x)|2dx = 1.

Then, it holds that (∫ ∞

−∞
x2|f(x)|2dx

)(∫ ∞

−∞
ξ2|f̂(ξ)|2dξ

)
≥ π

2
.

Hint: Do integration by parts on
∫∞
−∞ |f(x)|2dx and then apply the Cauchy–Schwarz inequality for

the inner product

⟨f, g⟩2 =

∫
R
f(x)g(x)dx.
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Solution: We compute

1 =

∫
f2 =

∫
f2x′ = [Int. by parts] = [f2(x)x]∞−∞ − 2

∫
xff ′ = 0− 2⟨xf, f ′⟩.

Using Cauchy-Scwartz, we find

1

4
= |⟨xf, f ′⟩|2 ≤ ∥xf∥2∥f ′∥2 =

∫
(xf)2

∫
(f ′)2

Applying the Plancharel formula to the right factor in the last expression yields

1

4
≤
∫
(xf)2

1

2π

∫
(ξf̂)2 =⇒ π

2
≤
∫
(xf)2

∫
(ξf̂)2
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