Fourier Analysis 2022/2023

Lecturer: Francesca Arici, Dimitris Gerontogiannis
Assistants: Jack Thelin af Ekenstam, Yufan Ge

Exam 16 June 2023, from 13:15 to 16:15.
Contains 5 questions for 99 points.

Instructions

You can answer the questions in English or in Dutch. If your choice is Dutch, please feel free to use English terminology when convenient.

- If you use results from the book or from the homework sheets, formulate clearly what you are using and where it can be found.
- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Hints are provided for convenience, you can choose to use or not use them.
- This exam contains 5 questions for 99 points on 8 pages. The final grade equals as $1+$ total points $/ 11$.

We recommend you use the following convention for the Fourier transform on $\mathcal{S}(\mathbb{R})$:

$$
\mathcal{F}(f)(\xi)=\widehat{f}(\xi)=\int_{\mathbb{R}} e^{-i x \xi} f(x) d x
$$

1. (a) (5 points) Denote by $C^{1}(\mathbb{T}, \mathbb{R})$ the space of real-valued 2π periodic C^{1}-functions. Suppose that $f \in C^{1}(\mathbb{T}, \mathbb{R})$ satisfies $\int_{\mathbb{T}} f(t) d \lambda(t)=0$. Show that

$$
\int_{\mathbb{T}}|f(t)|^{2} d \lambda(t) \leq \int_{\mathbb{T}}\left|f^{\prime}(t)\right|^{2} d \lambda(t)
$$

(b) (10 points) Prove that equality holds if and only if there are constants $c_{1}, c_{2} \in \mathbb{R}$ such that $f(t)=$ $c_{1} \sin (t)+c_{2} \cos (t)$.
Hint: Use Parseval's identity.

Solution:

Noting that $\widehat{f}^{\prime}(n)=\operatorname{in} \widehat{f}(n)$ and applying Parseval's identity to f and f^{\prime} yields

$$
\frac{1}{2 \pi} \int|f(x)|^{2} d x=\sum_{n \neq 0}|\widehat{f}(n)|^{2}, \quad \frac{1}{2 \pi} \int\left|f^{\prime}(x)\right|^{2} d x=\sum_{n \neq 0} n^{2}|\widehat{f}(n)|^{2}
$$

Hence

$$
\int|f(x)|^{2} d x=2 \pi \sum_{n \neq 0}|\widehat{f}(n)|^{2} \leq 2 \pi \sum_{n \neq 0} n^{2}|\widehat{f}(n)|^{2}=\int\left|f^{\prime}(x)\right|^{2} d x
$$

Now, assume $\int|f(x)|^{2} d x=\int\left|f^{\prime}(x)\right|^{2} d x$. Again, we note that $\widehat{f}^{\prime}(n)=i n \widehat{f}(n)$ and using Parseval's identity, we conclude that

$$
\begin{equation*}
\sum_{n \neq 0}|\widehat{f}(n)|^{2}=\frac{1}{2 \pi} \int|f(x)|^{2} d x=\frac{1}{2 \pi} \int\left|f^{\prime}(x)\right|^{2} d x=\sum_{n \neq 0} n^{2}|\widehat{f}(n)|^{2} \tag{1}
\end{equation*}
$$

Towards a contradiction, suppose that $\widehat{f}(k) \neq 0$ for some $|k|>1$, then

$$
k^{2}>1 \Longrightarrow k^{2}|\widehat{f}(k)|^{2}>|\widehat{f}(k)|^{2}
$$

It follows that

$$
\sum_{n \neq 0, k}|\widehat{f}(n)|^{2}+|\widehat{f}(k)|^{2}<\sum_{n \neq 0, k} n^{2}|\widehat{f}(n)|^{2}+k^{2}|\widehat{f}(k)|^{2}
$$

which contradicts equation (1). So the only Fourier coefficients of f that may be nonzero are $\widehat{f}(1)$ and $\widehat{f}(-1)$. By uniqueness of Fourier series (Lecture 4), f is given by $f(x)=\widehat{f}(1) e^{i x}+\widehat{f}(-1) e^{-i x}$. Rewriting f in the basis $\{\sin (n x), \cos (n x)\}_{n \in \mathbb{N}}$, we have $f(x)=c_{1} \cos (x)+c_{2} \sin (x)$, where

$$
c_{1}=\frac{1}{\pi} \int f(x) \cos (x) d x, \quad c_{2}=\frac{1}{\pi} \int f(x) \sin (x) d x
$$

are clearly real numbers. Alternatively, you may note that $\widehat{f}(-1)=\overline{\widehat{f}(1)}$ and use Euler's identity to write $\widehat{f}(1) e^{i x}+\widehat{f}(-1) e^{-i x}$ in the desired form.
2. Let $f \in L^{1}(\mathbb{T})$. Show the following.
(a) (5 points) For every $x \in \mathbb{T}$ and $N \in \mathbb{N}$ the Cesàro mean $\sigma_{N}(f)$ can be written as

$$
\sigma_{N}(f)(x)=\sum_{k=-(N-1)}^{N-1}\left(1-\frac{|k|}{N}\right) \widehat{f}(k) e^{i k x}
$$

Solution: This is the rewriting of the Cesàro mean: Firstly we have

$$
s_{N}(f)(x)=\sum_{k=-N}^{N} \widehat{f}(k) e^{i k x}
$$

Then the Cesàro mean is the following:

$$
\begin{aligned}
\sigma_{N} & =\frac{1}{N} \sum_{k=0}^{N-1} s_{k}(f) \\
& =\frac{1}{N} \sum_{k=0}^{N-1} \sum_{n=-k}^{k} \widehat{f}(n) e^{i n x} \\
& =\frac{1}{N}\left(\widehat{f}(0) e^{i \cdot 0 \cdot x}+\widehat{f}(-1) e^{i \cdot(-1) \cdot x}+\widehat{f}(0) e^{i \cdot 0 \cdot x}+\widehat{f}(1) e^{i \cdot 1 \cdot x}+\cdots+\widehat{f}(N-1) e^{i \cdot(N-1) \cdot x}\right. \\
& =\frac{1}{N}\left(N \cdot \widehat{f}(0) e^{i \cdot 0 \cdot x}+(N-1) \widehat{f}(-1) e^{-i x}\right)+(N-1) \widehat{f}(1) e^{i x}+\cdots+\widehat{f}(N-1) e^{i(N-1) x} \\
& =\sum_{k=-(N-1)}^{N-1}\left(\frac{N-|k|}{N}\right) \widehat{f}(k) e^{i k x} \\
& =\sum_{k=-(N-1)}^{N-1}\left(1-\frac{|k|}{N}\right) \widehat{f}(k) e^{i k x} .
\end{aligned}
$$

(b) (15 points) If $\int_{\mathbb{T}} f(t) d \lambda(t)=0$, define the 2π-periodic function $g:[-\pi, \pi] \rightarrow \mathbb{C}$ as

$$
g(x)=\int_{-\pi}^{x} f(t) d \lambda(t) .
$$

It is 2π-periodic since $g(-\pi)=g(\pi)$ (this does not need to be proved). Prove that

1. g is continuous and hence a function in $C(\mathbb{T})$;

Solution: Since $C_{c}(\mathbb{T})$ is dense in $L^{1}(\mathbb{T})$ (with respect to L^{1}-norm) and by the compactness of \mathbb{T} we have $C_{c}(\mathbb{T})=C(\mathbb{T})$. Then for any $\epsilon>0$, find $h \in C(\mathbb{T})$ such that $\|h-f\|_{1} \leq \epsilon$. We have the following estimate:

$$
\begin{aligned}
|g(x+\Delta x)-g(x)| & =\left|\int_{x}^{x+\Delta x} f(t) d \lambda(t)\right| \\
& =\left|\int_{x}^{x+\Delta x} f(t)-h(t)+h(t) d \lambda(t)\right| \\
& \leq\left|\int_{x}^{x+\Delta x} h(t) d \lambda(t)\right|+\|f-h\|_{1} \\
& \leq \sup _{x \in \mathbb{T}}|h(t)| \cdot \Delta x+\epsilon \rightarrow \epsilon
\end{aligned}
$$

Since this holds for arbitrarily small ϵ, we prove the continuity of g.
2. $\widehat{f}(k)=i k \widehat{g}(k)$ for every $k \in \mathbb{Z}$.

Solution:

Let $\left\{f_{n}\right\}$ be the sequence of continuous functions on \mathbb{T} that converges to f in L^{1} norm (therefore $\widehat{f}_{n}(k)$ converges to $\widehat{f}(k)$ uniformly for each $k \in \mathbb{Z}$). By compactness of \mathbb{T} (or the fact that \mathbb{T} has finite measure), define $g_{n}(x):=\int_{-\pi}^{x} f_{n}(t) d \lambda(t)$, we have that $g_{n}(x)$
converges to $g(x)$ in L^{1} norm as well. Indeed, we have

$$
\begin{aligned}
\left\|g-g_{n}\right\|_{1} & =\int_{\mathbb{T}}\left|\int_{-\pi}^{x} f_{n}(t)-f(t) d \lambda(t)\right| d \lambda(x) \\
& \leq \int_{\mathbb{T}}\left|\int_{-\pi}^{x}\right| f_{n}(t)-f(t)|d \lambda(t)| d \lambda(x) \\
& =2 \pi\left\|f_{n}-f\right\|_{1} \rightarrow 0
\end{aligned}
$$

Since f_{n} is continuous, we have g_{n} is continuously differentiable and $g_{n}^{\prime}=f_{n}$. By the property of Fourier coefficient of derivative, we have $\widehat{f}_{n}(k)=i k \widehat{g}_{n}(k)$. Since L^{1} convergence implies the uniform convergence of the Fourier coefficient, we have

$$
\widehat{f}(k)=\lim _{n} \widehat{f}_{n}(k)=\lim _{n} i k \widehat{g}_{n}(k)=i k \widehat{g}(k)
$$

(c) (10 points) If $\int_{\mathbb{T}} f(t) d \lambda(t)=0$ and $\widehat{f}(k)=-\widehat{f}(-k) \geq 0$ for every $k \in \mathbb{Z}$, then it holds that

$$
\sum_{k=1}^{\infty} \frac{1}{k} \widehat{f}(k)<\infty
$$

Hint: Use parts (a) and (b) together with Fejér's Theorem on the function g defined from f as in part (b).

Solution: Since g is continuous, we can apply Fejér's theorem for g :

$$
\lim _{N} \sigma_{N}(g)(x)=g(x)<\infty
$$

To prove the desired inequality, we estimate the following:

$$
\begin{aligned}
\sigma_{N}(g)(0) & =\sum_{k=-(N-1)}^{N-1}\left(1-\frac{|k|}{N}\right) \widehat{g}(k) e^{i \cdot k \cdot 0} \\
& =\widehat{g}(0)+\sum_{k=-(N-1)}^{N-1, k \neq 0}\left(1-\frac{|k|}{N}\right) \frac{1}{i k} \widehat{f}(k) \\
& =\widehat{g}(0)+2 \sum_{k=1}^{N-1}\left(1-\frac{|k|}{N}\right) \frac{1}{i k} \widehat{f}(k) \\
& =\widehat{g}(0)+2 \sum_{k=1}^{N-1} \frac{1}{i k} \widehat{f}(k)-\frac{2}{i N} \sum_{k=1}^{N-1} \widehat{f}(k) .
\end{aligned}
$$

Since $\widehat{f}(k) \rightarrow 0$ we have $\forall \epsilon>0$, there exists $N_{\epsilon}>0$ such that $|\widehat{f}(k)| \leq \epsilon$ for all $k \geq N_{\epsilon}$. Let $M=\max _{k \leq N_{\epsilon}}|\widehat{f}(k)|$, we then have

$$
g(0)=\lim _{N} \frac{1}{N} \sum_{k=1}^{N} \widehat{f}(k) \leq \lim _{N} \frac{N_{\epsilon} \cdot M}{N}+\frac{\epsilon \cdot\left(N-N_{\epsilon}\right)}{N}=\epsilon
$$

which holds for arbitrarily small ϵ. Therefore, we have

$$
\lim _{N} \sigma_{N}(g)(0)=\lim _{N}\left(\widehat{g}(0)+2 \sum_{k=1}^{N-1} \frac{1}{i k} \widehat{f}(k)+\frac{2}{i N} \sum_{k=1}^{N-1} \widehat{f}(k)\right)=\widehat{g}(0)+2 \sum_{k=1}^{\infty} \frac{1}{i k} \widehat{f}(k)
$$

which implies that

$$
\left|\sum_{k=1}^{\infty} \frac{1}{i k} \widehat{f}(k)\right|=\sum_{k=1}^{\infty} \frac{1}{k} \widehat{f}(k)=\left|\frac{g(0)-\widehat{g}(0)}{2}\right|<\infty .
$$

3. Consider the tempered distribution induced by the function

$$
f(x)=\left|x^{2}-2\right| .
$$

(a) (4 points) Compute its Fourier transform;

Solution: Observe that the function $f(x)=\left|x^{2}-2\right|$ can be rewritten as the following:

$$
\left.\left(x^{2}-2\right)(1+2 H(x-\sqrt{2})-2 H(x+\sqrt{2}))\right),
$$

where the function $H(x)$ is the Heaviside function introduced either in the lecture note or in the assignment.
Since the Fourier transform of the distribution is given by $\widehat{F}(f):=F(\widehat{f})$, we have

$$
\begin{aligned}
\widehat{F}_{f}(g) & =\int_{\mathbb{R}}\left|x^{2}-2\right| \widehat{g} d x \\
& \left.=\int_{\mathbb{R}}\left(x^{2}-2\right)(1+2 H(x-\sqrt{2})-2 H(x+\sqrt{2}))\right) \widehat{g} d x \\
& =\int_{\mathbb{R}}\left(x^{2}-2\right) \widehat{g} d x+\int_{\mathbb{R}}(2 H(x-\sqrt{2})-2 H(x+\sqrt{2}))\left(x^{2}-2\right) \widehat{g} d x \\
& =\int_{\mathbb{R}}-\widehat{g^{\prime \prime}}-2 \widehat{g} d x+\int_{\mathbb{R}}(2 H(x-\sqrt{2})-2 H(x+\sqrt{2}))\left(-\widehat{g^{\prime \prime}}-2 \widehat{g}\right) d x \\
& =\int_{\mathbb{R}}-\widehat{g^{\prime \prime}}-2 \widehat{g} d x+F_{2 H(x-\sqrt{2})-2 H(x+\sqrt{2})}\left(-\widehat{\left.g^{\prime \prime}-2 g\right) .}\right.
\end{aligned}
$$

Since $2 H(x-\sqrt{2})-2 H(x+\sqrt{2})$ is L^{1} function, we have for L^{1} functions $f, \widehat{F}_{f}(g)=F_{\hat{f}}(g)$. Therefore, we have by using the Fourier inversion formula:

$$
\widehat{F}_{f}(g)=-2 \pi\left(g^{\prime \prime}(0)+2 g(0)\right)+F_{2 H(x-\sqrt{2}-2 H(\sqrt{x+\sqrt{2}}))}(g) .
$$

(b) (5 points) Compute its second derivative in the sense of distributions.

Solution: This exercise is to check if students understand the Leibniz rule for distributions: $(X F)^{\prime}=X^{\prime} F+X F^{\prime}$ when X is a multiplicator.
Note that $\left(F_{H}\right)^{\prime}=\delta$ where H is the Heaviside function.

$$
F^{\prime}=2 x(1+2 H(x-\sqrt{2})-2 H(x+\sqrt{2}))+\left(x^{2}-2\right)(2 \delta(x-\sqrt{2})-2 \delta(x+\sqrt{2})) .
$$

Therefore we have

$$
\begin{aligned}
F^{\prime \prime} & =2(1+2 H(x-\sqrt{2})-2 H(x+\sqrt{2})) \\
& +4 x(2 \delta(x-\sqrt{2})-2 \delta(x+\sqrt{2})) \\
& +2\left(x^{2}-2\right)(2 \delta(x-\sqrt{2})-2 \delta(x+\sqrt{2})) \circ \frac{d}{d x} .
\end{aligned}
$$

4. Consider the operator $\Phi: \mathcal{S}(\mathbb{R}) \rightarrow \mathcal{S}(\mathbb{R})$ given by $\Phi f=\frac{1}{\sqrt{2 \pi}} \widehat{f}$.
(a) (5 points) Show that $\Phi^{4}=1$, the identity operator on $\mathcal{S}(\mathbb{R})$;

Solution: Take $\psi \in \mathcal{S}(\mathbb{R})$. Recall that $\widehat{\hat{\psi}}=2 \pi \widetilde{\psi}$, where $\widetilde{\psi}(x)=\psi(-x)$. Therefore,

$$
\Phi^{2}(\psi)=\frac{1}{2 \pi} \widehat{\widehat{\psi}}=\frac{2 \pi}{2 \pi} \tilde{\psi}=\tilde{\psi} .
$$

It follows that

$$
\Phi^{4}(\psi)=\Phi^{2}\left(\Phi^{2}(\psi)\right)=\Phi^{2}(\widetilde{\psi})=\widetilde{\widetilde{\psi}}=\psi,
$$

i.e. $\Phi^{4}(\psi)=\psi$.
(b) (10 points) Show that every $f \in \mathcal{S}(\mathbb{R})$ has a unique decomposition as

$$
f=\sum_{k=0}^{3} f_{k}, \quad f_{k} \in \mathcal{S}(\mathbb{R}), \Phi\left(f_{k}\right)=i^{k} f_{k} .
$$

Solution: Fix $f \in \mathcal{S}(\mathbb{R})$ and let

$$
f_{k}=\frac{1}{4} \sum_{n=0}^{3} i^{-n k} \Phi^{n}(f) .
$$

We have

$$
\begin{aligned}
\sum_{k=0}^{3} f_{k}= & \frac{1}{4}[f(1+1+1+1)+ \\
& \Phi(f)\left(1+i^{-1}+i^{-2}+i^{-3}\right)+ \\
& \Phi^{2}(f)\left(1+i^{-2}+1+i^{-2}\right)+ \\
& \left.\Phi^{3}(f)\left(1+i^{-3}+i^{-2}+i^{-1}\right)\right] \\
= & f+0+0+0 \\
= & f
\end{aligned}
$$

and

$$
\begin{aligned}
\Phi\left(f_{k}\right) & =\Phi\left(\frac{1}{4} \sum_{n=0}^{3} i^{-n k} \Phi^{n}(f)\right) \\
& =\frac{1}{4} \sum_{n=0}^{3} i^{-n k} \Phi^{n+1}(f) \\
& =\frac{i^{k}}{4} \sum_{n=0}^{3} i^{-(n+1) k} \Phi^{n+1}(f) \\
& =\frac{i^{k}}{4} \sum_{m=1}^{4} i^{-m k} \Phi^{m}(f) \\
& =\frac{i^{k}}{4} \sum_{m=0}^{3} i^{-m k} \Phi^{m}(f) \\
& =i^{k} f_{k} .
\end{aligned}
$$

(c) (5 points) Show that the differential operator $L(f)(x)=x f(x)+f^{\prime}(x)$ satisfies

$$
L \mathcal{F}(f)=i \mathcal{F}(L(f))
$$

and prove that $\Phi L\left(f_{k}\right)=i^{k+1} L\left(f_{k}\right)$ for the f_{k} 's in the decomposition.

Solution: Note that for any $f \in \mathcal{S}(\mathbb{R})$, we have

$$
\Phi(L(f))=\Phi\left(x f(x)+f^{\prime}(x)\right)=i \Phi(f)^{\prime}+i \xi \Phi(f)=i L(\Phi(f)),
$$

by using properties of the Fourier transform. Now, using the property of f_{k} from (b), it follows that

$$
\Phi\left(L\left(f_{k}\right)\right)=i L\left(\Phi\left(f_{k}\right)\right)=i L\left(i^{k} f_{k}\right)=i^{k+1} L\left(f_{k}\right)
$$

5. The following statements manifest that a non-zero function and its Fourier transform cannot be localised simultaneously to arbitrary precision.
(a) (10 points) Prove that if a non-zero $f \in C_{0}(\mathbb{R})$ has compact support, then $\widehat{f} \in C_{0}(\mathbb{R})$ cannot have also compact support. Hint: If you assume that f is compactly supported, you may extend it to a periodic function.

Solution: Towards a contradiction, suppose that f and \widehat{f} are both compactly supported. Say $\operatorname{supp} f \subseteq[-A, A]$. Viewing f as a function on $[-2 \underset{\sim}{A}, 2 A]$, we may extend it to a $4 A$-periodic function \widetilde{f}. Note that the Fourier coefficients c_{n} of \widetilde{f} are given by

$$
c_{n}=\frac{1}{4 A} \int_{-2 A}^{2 A} \widetilde{f}(x) e^{-2 \pi i n x / 4 A} d x=\frac{1}{4 A} \int_{-\infty}^{\infty} f(x) e^{-2 \pi i n x / 4 A} d x=\frac{1}{4 A} \widehat{f}(n / 4 A) .
$$

Since \widehat{f} is compactly supported $\exists N>0$ such that $\forall n$ with $|n|>N$, we have $\widehat{f}(n / 4 A)=0$.
Since f, and so also \tilde{f}, is continuous, uniqueness of Fourier coefficients implies that $\widetilde{f}(x)=$ $\sum_{n=-N}^{N} c_{n} e^{-i n x}$ is a trigonometric polynomial. However, $\left.\widetilde{f}\right|_{[A, 2 A]}=0$, which cannot happen for trigonometric polynomials. Thus, we have reached a contradiction and we conclude that both f and \widehat{f} cannot be compactly supported.
(b) (15 points) Prove Heisenberg's Uncertainty Principle: Let $f \in \mathcal{S}(\mathbb{R}) \subseteq L^{2}(\mathbb{R})$ and assume for simplicity that it attains only real values and that

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x=1
$$

Then, it holds that

$$
\left(\int_{-\infty}^{\infty} x^{2}|f(x)|^{2} d x\right)\left(\int_{-\infty}^{\infty} \xi^{2}|\widehat{f}(\xi)|^{2} d \xi\right) \geq \frac{\pi}{2}
$$

Hint: Do integration by parts on $\int_{-\infty}^{\infty}|f(x)|^{2} d x$ and then apply the Cauchy-Schwarz inequality for the inner product

$$
\langle f, g\rangle_{2}=\int_{\mathbb{R}} f(x) g(x) d x
$$

Solution: We compute

$$
1=\int f^{2}=\int f^{2} x^{\prime}=[\text { Int. by parts }]=\left[f^{2}(x) x\right]_{-\infty}^{\infty}-2 \int x f f^{\prime}=0-2\left\langle x f, f^{\prime}\right\rangle
$$

Using Cauchy-Scwartz, we find

$$
\frac{1}{4}=\left|\left\langle x f, f^{\prime}\right\rangle\right|^{2} \leq\|x f\|^{2}\left\|f^{\prime}\right\|^{2}=\int(x f)^{2} \int\left(f^{\prime}\right)^{2}
$$

Applying the Plancharel formula to the right factor in the last expression yields

$$
\frac{1}{4} \leq \int(x f)^{2} \frac{1}{2 \pi} \int(\xi \widehat{f})^{2} \Longrightarrow \frac{\pi}{2} \leq \int(x f)^{2} \int(\xi \widehat{f})^{2}
$$

References

[1] A. Vretblad, Fourier analysis and its applications, Graduate Texts in Mathematics, 223, SpringerVerlag, New York, 2003. MR1992764

