Exam Introduction to Perturbation Methods

20 June 2023, 13:15-16:15

- Please put your name and student number on every page you hand in.
- Do not just give answers, explain every step that you make.
- NOTE that when a first-term expansion is requested, you need to determine the first non-zero term.
- This exam consists of three assignments.

Good luck!

1. Consider the following problem

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+(1+2 x) y^{\prime}-2 y=1 \tag{1}
\end{equation*}
$$

for $0<x<1$, where $y(0)=\varepsilon$ and $y(1)=\sin (\varepsilon)$.
(a) Determine a regular expansion of this equation. Show that this solution cannot satisfy both boundary conditions.
(b) Explain where a boundary or interior layer lies.
(c) Determine a first-term expansion of the solution in this layer.
(d) Match the solutions that you found in (a) and (c) to each other. Give the first-term composite expansion of the problem.
!!! See next page !!!
2. Consider the problem of solving

$$
\dot{y}=y-y^{3}
$$

for $t>0$ where $y(0)=\varepsilon$.
(a) Sketch the direction field for this problem and from this determine what happens to the solution as $t \rightarrow \infty$.
(b) Suppose one assumes a regular expansion of the form $y(t)=\varepsilon y_{0}(t)+\varepsilon^{\alpha} y_{1}(t)+\cdots$ with $\alpha>1$. After finding y_{0} and y_{1}, explain why this is not expected to be an accurate approximation as $t \rightarrow \infty$. Also, explain why a multiplescale expansion should be used but the standard approach taking $t_{1}=t$ and $t_{2}=\varepsilon^{\beta} t$ will not work for this problem.
(c) Assume $t_{2}=\varepsilon^{\beta} f(t)$. Determine $f(t)$.

Hint. $f(t)$ can be determined from the secular-removing condition and the requirement that $f(0)=0$.
(d) Show that

$$
y=\frac{\varepsilon e^{t}}{\sqrt{1+\varepsilon^{2}\left(e^{2 t}-1\right)}},
$$

to leading order.

!!! See next page !!!

3. Consider for $\mu \in \mathbb{R}, h(x, \mu ; \varepsilon): \mathbb{R}^{2} \rightarrow \mathbb{R}$ sufficiently smooth, and $0<\varepsilon \ll 1$,

$$
\begin{equation*}
\dot{x}=x^{4}-5 \mu x^{2}+4 \mu^{2}+\varepsilon h(x, \mu ; \varepsilon) \tag{2}
\end{equation*}
$$

(a) The unperturbed case $h(x, \mu ; \varepsilon) \equiv 0$.
(i) Show that 4 critical points $\bar{x}= \pm \bar{x}_{j}(\mu),(j=1,2)$ appear simultaneously as μ increases through 0 and determine the stability of these critical points. Give a sketch of the associated bifurcation diagram, i.e. sketch $\pm \bar{x}_{j}(\mu)$ as functions of $\mu(j=1,2)$ and indicate the stability of the various branches.
(ii) In a standard, generic, setting 'new' critical points are created in pairs (this is the classical saddle-node bifurcation). This implies that a certain nondegeneracy condition must be violated in the present setting. Which one?
(b) Perturbation analysis for general $h(x, \mu ; \varepsilon)$.

To investigate the impact of the 'unfolding' term $\varepsilon h(x, \mu ; \varepsilon)$ on the bifurcational structure found in (a), we consider the effect of this perturbation on the 4 leading order branches $\bar{x}= \pm \bar{x}_{j}(\mu),(j=1,2)$ found in (a). Using the fact that x only appears in even powers in the leading order $(=\mathcal{O}(1))$ part of the equation for \dot{x}, we introduce $X_{j}=\left(\bar{x}_{j}\right)^{2}$ and expand: $X_{j}^{\varepsilon}(\mu)=X_{j}^{0}+\varepsilon X_{j}^{1}+\mathcal{O}\left(\varepsilon^{2}\right)$ with $X_{j}^{0}=X_{j}^{0}(\mu)=\left(\bar{x}_{j}^{0}(\mu)\right)^{2}$ and $\bar{x}_{j}^{0}(\mu)$ as found in (a). Show that $X_{j}^{1}=X_{j}^{1}(\mu)$ is determined by $\left(2 X_{j}^{0}-5 \mu\right) X_{j}^{1}=-h\left(\pm \sqrt{X_{j}^{0}}, \mu ; 0\right)$.
(c) The cases $h(x, \mu ; \varepsilon)=H_{ \pm}(x, \mu ; \varepsilon)= \pm 3 \mu-\varepsilon$.
(i) $h=H_{-}$. Show that this perturbation indeed 'unfolds' the degenerate situation of (a) into a combination of 2 standard saddle-node bifurcations at $\mu=\mu_{k}^{S N}, k=1,2$. Determine $\mu_{k}^{S N}, k=1,2$ (at leading order in ε), determine the stability of the critical points, and give a sketch of the bifurcation diagram (including stability properties).
Hint. Use (b).
(ii) $h=H_{+}$. As (c)(i), including the sketch of the bifurcation diagram (indicating the obtained stability properties). Show that there is a third bifurcation value μ_{*} in this case and determine a leading order approximation of μ_{*}.
(d) Higher order effects?

The 'sensitivity' of the unperturbed system is also shown by the fact that it is crucial to include the $-\varepsilon$ terms in $H_{ \pm}(x, \mu ; \varepsilon)$ - an $\mathcal{O}\left(\varepsilon^{2}\right)$ effect in (2) we sofar did not take into account. This can (for instance) be seen by dropping the $-\varepsilon$ term in $H_{+}(x, \mu ; \varepsilon)$: take $h(x, \mu ; \varepsilon)=3 \mu$ and determine a local bifurcation diagram, i.e. a bifurcation diagram (including stability properties) in which x and μ are asymptotically small.
Hint. Determine appropriate scalings for x and μ (for instance based on the outcome of the analysis in (c)).

