Algebraic Curves, final exam

January 9th, 2023

- No calculators, cell phones or other electronic devices allowed at any time.
- Show all your reasoning and work for full credit, except where otherwise indicated.
- You have 180 minutes.
- There are 4 questions for 38 points in total; your grade will be $\frac{\text { \#points received }}{38} \cdot 9+1$.
- You do not need to simplify numerical expressions. For example leave fractions like $100 / 7$ or expressions like $\ln (3) / 2$ as is.
- If you cannot solve a part of an exercise which is needed later, you may write e.g. "Let N be the answer to part (a). Then ..."
- Good luck!

Throughout, we work over an algebraically closed field k. We assume the characteristic of k is not 2 or 3 .

Exercise 1. Consider the affine plane curves given by

$$
\begin{aligned}
& F=y-x^{2} \\
& G=y-x^{3}
\end{aligned}
$$

(a) (1 point) Find the intersection points of F and G.
(b) (6 points) Compute the intersection multiplicity at each intersection point. If you want to say that two curves have different tangent directions at a point, you don't need to prove this.
(c) (4 points) Consider the projective closures F^{*}, G^{*} of the curves above given by homogenizing the equations. Compute the intersection multiplicity at each intersection point of F^{*} and G^{*} in \mathbb{P}^{2}.

Exercise 2. (12 points) In each case, determine if the variety X is affine or projective. If X is affine, find the coordinate ring $\Gamma(X)=\Gamma\left(X, \mathcal{O}_{X}\right)$. If X is projective, find the homogeneous coordinate ring $\Gamma_{h}(X)$. (None of the examples are both affine and projective.)

In each case, find the ring of rational functions $k(X)$ and write down the dimension of each variety.
(a) $X=\mathbb{A}^{1}$
(b) $X=\mathbb{P}^{1}$
(c) $X=\mathbb{P}^{3}$
(d) $X=V(F)$ inside \mathbb{P}^{2}, where F is the form $x^{2}+y^{2}+z^{2}$.

Exercise 3. Let $E=V(F) \subseteq \mathbb{P}^{2}$ be the vanishing locus of the cubic equation

$$
z y^{2}=x^{2}(x+z) .
$$

Assume the characteristic of k is not 2 or 3 .
(a) (2 points) What is the multiplicity of E at the origin $[0: 0: 1]$?
(b) (3 points) Give the equations for the tangent lines to E at $[0: 0: 1]$. Is the origin an ordinary double point of the curve E ?
(c) (4 points) Let $E^{\prime}:=E \backslash\{[0: 0: 1]\}$. All points of E^{\prime} are simple and E^{\prime} has a group law with identity $[0: 1: 0]$, defined similarly to that of a nonsingular cubic curve. (The group law on the simple points E^{\prime} of a cubic curve was defined in your homework.)
What is the sum of the point $p=[-1: 0: 1]$ with itself under this group law?
Exercise 4. (6 points) Let X be the subvariety of \mathbb{P}^{2} given by $z x-y^{2}=0$. Consider the maps $f, g: X \rightarrow \mathbb{P}^{1}$ given by

$$
\begin{aligned}
f([x: y: z]) & =[x: y] \\
g([x: y: z]) & =[y: z] .
\end{aligned}
$$

Show that f and g represent the same rational map from X to \mathbb{P}^{1}. What is the domain of this map?

