Linear Analysis

27 January 2023 13:15-16:15hr

- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Write in full sentences and clearly state what you use in your solutions.
- The point distribution is preliminary and may be subject to change.
- This exam has five questions on two pages.

1. Let H be a Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ an orthonormal basis in H. Let $T \in B(H)$ be a bounded operator. For $k \in \mathbb{N}$ define $T_{k}: H \rightarrow H$ by

$$
T_{k}(x):=\sum_{n=0}^{k}\left\langle x, e_{n}\right\rangle T e_{n} .
$$

a. Prove that T_{k} is a bounded linear operator.
b. Prove that for all $x \in H$ the sequence $T_{k} x$ converges to $T x$ in norm on H.
c. Prove that $\sup _{k}\left\|T_{k}\right\|<\infty$.
d. Suppose that $T_{k} \rightarrow T$ as $k \rightarrow \infty$ in the operator norm on $B(H)$. Prove that $T e_{n} \rightarrow 0$ as $n \rightarrow \infty$ in norm on H.
2. Let X be a Banach space and $\left\{X_{n}\right\}_{n=0}^{\infty}$ a countable collection of linear subspaces of X such that $X=\bigcup_{n=0}^{\infty} X_{n}$.
a. Prove that there exist $k \geq 0$ and $\varepsilon>0$ such that $B(0, \varepsilon) \subset \bar{X}_{k}$.
b. If k is as in part a.), prove that $X=\bar{X}_{k}$.

Let H be an inner product space and $\left\{e_{n}\right\}_{n=0}^{\infty}$ an orthonormal sequence such that

- for all $x \in H$ there exists $N \geq 0$ such that $\left\langle x, e_{n}\right\rangle=0$ for all $n \geq N$;
- $\left\{e_{n}: n \in \mathbb{N}\right\}^{\perp}=\{0\}$.
c. Prove that H is not a Hilbert space.

3. Let X be a Banach space and $S \in B(X)$ a bijective linear transformation.
a. Prove that $\|x\|_{S}:=\|S x\|$ is a norm on X.
b. Prove that the norms $\|\cdot\|$ and $\|\cdot\|_{S}$ are equivalent.
4. Let X be a Banach space, $A \subset X$ a subset and $T \in B(X)$ a bounded operator. We write

$$
T A:=\{T a \in X: a \in A\} \subset X
$$

for the image of A under T. Furthermore we write $\overline{T A}$ for the closure of the set $T A$. A subset $B \subset X$ is bounded if

$$
\sup \{\|b\|: b \in B\}<\infty
$$

We say that the operator T is compact if it has the following property: For every bounded subset $B \subset X$ the set $\overline{T B}$ is compact.
a. Prove that X is finite dimensional if and only if the identity operator Id : $X \rightarrow X$ is compact.

An operator $P \in B(X)$ is called a projection operator if $P^{2}=P$.
b. Let $P \in B(X)$ a projection operator. Prove that $P X \subset X$ is a closed linear subspace of X.
c. Prove that if $P \in B(X)$ is a compact projection operator, then $P X$ is finite dimensional.
5. Let X be a Banach space, $f \in X^{\prime}, f \neq 0$ and $\alpha \in \mathbb{F}$. The hyperplane in X defined by f and α is the set

$$
H=H_{(f, \alpha)}:=\{x \in X: f(x)=\alpha\} .
$$

a. Prove that $H_{(f, \alpha)} \neq \emptyset$ and that $|\alpha| \leq\|f\| \cdot \inf _{h \in H_{(f, \alpha)}}\|h\|$.

The following fact is a consequence of the Hahn-Banach theorem: Let X be a non-zero reflexive space with dual space X^{\prime}. For every $f \in X^{\prime}$ there exists an $x \in X$ with $\|x\|=1$ such that $\|f\|=f(x)$.
b. Suppose that X is reflexive. Prove that there exists $z \in H_{(f, \alpha)}$ such that

$$
\inf _{h \in H_{(f, \alpha)}}\|h\|=\|z\| .
$$

Recall the isometric isomorphism

$$
\varphi: \ell^{\infty} \simeq\left(\ell^{1}\right)^{\prime}, \quad \varphi(x)(y):=\sum_{n=1}^{\infty} x_{n} y_{n}, \quad x \in \ell^{\infty}, y \in \ell^{1}
$$

Let $x=\left(x_{k}\right) \in \ell^{\infty}$ be such that $\|x\|_{\infty} \notin\left\{\left|x_{k}\right|: k \in \mathbb{N}\right\}$ and consider the hyperplane $H_{\left(\varphi(x),\|x\|_{\infty}\right)} \subset \ell^{1}$.
c. Prove that for all $y \in \ell^{1}$ we have $|\varphi(x)(y)|<\|x\|_{\infty}\|y\|_{1}$.
d. Prove that there does not exist $y \in H_{\left(\varphi(x),\|x\|_{\infty}\right)}$ such that

$$
\inf _{h \in H_{\left(\varphi(x),\|x\|_{\infty}\right)}}\|h\|=\|y\| .
$$

Note that this proves that ℓ^{1} is not reflexive.
Hint for d.) : Argue by contradiction.

> Preliminary point distribution

Question:	1	2	3	4	5	Total
Points:	10	8	5	10	12	45
	$(2+3+2+3)$	$(2+2+4)$	$(2+3)$	$(4+2+4)$	$(2+4+2+4)$	

$$
\text { Grade }:=1+\frac{(\text { total number of points) }}{5}
$$

