Linear Analysis

6 January 2023 13:15-16:15hr

- You can use the results of the earlier parts of a question, even if you have not solved these parts.
- Write in full sentences and clearly state what you use in your solutions.
- The point distribution is preliminary and may be subject to change.
- This exam has five questions on two pages.
- 1. Let X be a normed space and $\{x_k\}_{k \in \mathbb{N}} \subset X$ a sequence such that for all $f \in X'$ the series $\sum_{k=1}^{\infty} |f(x_k)|$ is convergent.
 - a. The maps $T_n: X' \to \ell^1$ defined by

$$T_n(f) := (f(x_1), f(x_2), \cdots, f(x_n), 0, 0, \cdots),$$

are linear (you need not prove this). Show that each T_n is a bounded map.

- b. Prove that for all $f \in X'$ the sequence $T_n(f)$ is convergent.
- c. Prove that $\sup_n ||T_n|| < \infty$.

It follows from b.) that $T: X' \to \ell^1$, $T(f) := \lim_{n \to \infty} T_n(f)$, is a well-defined linear map.

d. Prove that $T: X' \to \ell^1$ is a bounded linear operator and that

$$\sup_{f\in X', \|f\|\leq 1}\sum_{k=1}^{\infty} |f(x_k)| < \infty.$$

- 2. Let *H* be a Hilbert space with inner product $\langle \cdot, \cdot \rangle$. Let $R, S : H \to H$ be two functions such that for all $x, y \in H$ we have $\langle x, Sy \rangle = \langle Rx, y \rangle$.
 - a. Prove that R, S are linear maps.
 - b. Show that for fixed $x \in H$, $\sup_{\|y\|=1} |\langle x, Sy \rangle| < \infty$.

Recall the antilinear isometric isomorphism

$$T_H: H \to H', \quad T_H(y)(x) := \langle x, y \rangle,$$

so that $||y||_H = ||T_H(y)||_{H'}$.

- c. Use the Uniform Boundedness Principle to show that S is a bounded map. Conclude that $R = S^*$, so that R is bounded as well.
- 3. Consider the Banach space C([0, 1]) of continuous functions on the interval [0, 1] equipped with the norm $||f||_{\infty} := \sup_{t \in [0,1]} |f(t)|$. Denote by

$$C^{1}([0,1]) := \left\{ f \in C([0,1]) : f' := \frac{\mathrm{d}f}{\mathrm{d}t} \in C([0,1]) \right\} \subset C([0,1]),$$

the subset of functions whose derivative exists and is again continuous.

a. Prove that $C^{1}([0,1])$ is a vector space and that

$$\frac{\mathrm{d}}{\mathrm{d}t}: C^1([0,1]) \to C([0,1]), \quad f \mapsto \frac{\mathrm{d}f}{\mathrm{d}t},$$

is a linear map. Conclude that $(C^1([0,1]), \|\cdot\|_{\infty})$ is a normed space.

b. Prove that the operator $\frac{d}{dt}$ is not continuous.

Recall the following result: Let $f_n \in C^1([0,1])$ be a sequence and $f, g \in C([0,1])$. If f_n converges to f uniformly and f'_n converges to g uniformly then $f \in C^1([0,1])$ and f' = g.

- c. Prove that the graph of the linear operator $\frac{d}{dt} : C^1([0,1]) \to C([0,1])$ is closed.
- d. Use b.) and c.) to prove that $(C^1([0,1]), \|\cdot\|_{\infty})$ is not a Banach space.
- 4. Let X be a real normed space and $A \subset X$ a nonempty subset. Define the *closed convex* hull of A to be the subset

$$\overline{\operatorname{conv}}(A) := \bigcap \left\{ B \subset X : A \subset B, B \text{ is closed and convex} \right\}.$$

- a. Prove that $\overline{\operatorname{conv}}(A)$ is a closed convex subset of X with the property that if $C \subset X$ is closed and convex, and $A \subset C$, then $\overline{\operatorname{conv}}(A) \subset C$.
- b. Prove that

$$\overline{\operatorname{conv}}(A) = \left\{ x \in X : \text{for all } f \in X', \quad f(x) \le \sup_{a \in A} f(a) \right\}.$$

5. Let

$$c_0 := \left\{ x = (x_k)_{k=0}^{\infty} = (x_0, x_1, \cdots) : x_k \in \mathbb{F}, \lim_{k \to \infty} x_k = 0 \right\},\$$

be the space of all sequences converging to zero, supplied with the usual norm $\|\cdot\|_{\infty}$ defined by $\|x\|_{\infty} := \sup_{k\geq 0} |x_k|$. Then c_0 is a Banach space (you need not prove this). This question will provide a proof of the fact that c_0 is not reflexive. Define $f : c_0 \to \mathbb{F}$ by setting

$$f(x) := \sum_{k=0}^{\infty} \frac{x_k}{k!}, \quad x = (x_0, x_1, \cdots) \in c_0.$$

- a. Show that f is a well-defined *bounded* linear functional.
- b. Show that ||f|| = e.
- c. Show that for all $x \in c_0$ such that ||x|| = 1 it holds that |f(x)| < e.

The following fact is a consequence of the Hahn-Banach theorem: Let X be a non-zero reflexive space with dual space X'. For every $f \in X'$ there exists an $x \in X$ with ||x|| = 1 such that ||f|| = f(x).

d. Using the above fact, prove that c_0 is not reflexive.

U 1						
Question:	1	2	3	4	5	Total
Points:	8	8	10	9	10	45
	(2+2+2+2)	(2+2+4)	(2+3+3+2)	(4+5)	(2+3+3+2)	

Preliminary point distribution

Grade := $1 + \frac{\text{(total number of points)}}{5}$