
Complex Networks

Teachers: M. Emmerich, D. Garlaschelli, F. den Hollander.
Written examination: 30 January 2019, 10:00-13:00.

Open book exam: the lecture notes may be consulted, but no other material.

Answer each question on a separate sheet. Put your name, student number and
the number of the question you are answering on each and every sheet. Provide
full explanations with each of the answers!

Each question is weighted by a number of points, as indicated. The total number
of points is 100. The final grade will be calculated as a weighted average: 30%
for the homework assignments and 70% for the exam.

Success!

1. a. [3 points] The WWW has 50-55 billion webpages. Still, it is possible
to navigate to almost every webpage within a few clicks only. Explain
why this is so. What is this property called?

b. [2 points] Explain why it is reasonable to model real-world networks
as large random graphs.

c. [2 points] Why is it useful to consider sequences of random graphs
labelled by the number of vertices?

2. Consider the configuration model with n vertices with degrees D1, . . . , Dn

that are drawn independently from a probability distribution f on N that
is non-deterministic.

a. [3 points] Compute the average number of neighbours ν of a vertex,
say vertex 1.

b. [3 points] Compute the average number of neighbours ν̄ of a ran-
domly chosen neighbour of vertex 1.

c. [3 points] Show that ν̄ > ν, and explain why this is so.

3. Consider the preferential attachment model with parameters m = 1 and
δ = − 1

2 .

a. [4 points] List the possible outcomes of PA1(1,− 1
2 ) and PA2(1,− 1

2 ).

b. [5 points] Compute the probability of each of these outcomes. Ex-
plain your answer.

c. [4 points] Is the sequence (PAn(1,− 1
2 ))n∈N scale free?

4. Let G∗ denote a simple undirected graph consistent with the degree se-
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quence ~k = (1, 2, 4, 2, 1).

a. [2 points] Draw your graph and write the corresponding adjacency
matrix.

b. [2 points] Now consider the Erdős-Rényi (ER) random graph with
a fixed number n = 5 nodes and connection probability p as a model
for G∗. Find the value p∗ that maximises the likelihood of generating
G∗.

c. [3 points] Calculate the expected value 〈ki〉 of the degree of each
node i under the ER model with n = 5 and p = p∗. For each vertex,
determine whether the realized degree in G∗ is larger or smaller than
the corresponding expected degree in the ER model.

d. [3 points] Calculate the standard deviation σi of the degree of each
verterx i under the ER model with n = 5 and p = p∗. Identify the
vertices whose realized degree in G∗ differs from the expected degree
by more than one standard deviation (in either direction).

e. [3 points] Calculate the probability of occurrence of G∗ under the
ER model with n = 5 and p = p∗.

f. [3 points] Find the most probable and least probable graphs under
the ER model with n = 5 and p = p∗. Compare these graphs with
your graph G∗.

5. Complex networks can be represented as an adjacency matrix, an adja-
cency list, and an edge list.

a. [4 points] Describe the graph in the picture as an adjacency matrix
and as an igraph graph formula (=̂ adjacency list). Use the syntax
of igraph (R or Python).

1

2 3

4

56

b. [2 points] An ultradense graph is a graph where the degree of each
node is greater than or equal to n− k for some constant k � n and
n denoting the number of edges. How does the space complexity of
an straightforward implementation of an adjacency matrix and of a
adjacency list scale asymptotically in terms of n in the worst case?
Use the Big O notation.

c. [4 points] Given a small and constant value of k and the knowledge
that all data will be ultradense graphs with constant k. Suggest a

2



data-structure that is space-efficient for storing an ultra-dense graph
and provide its space efficiency.

6. Two graphs are isomorphic if one graph can be obtained from the other
graph by re-assigning the node labels.

a. [3 points] Given a graph with node set V and edge set E. How
many isomorphic graphs do there exist?

b. [4 points] Discuss an efficient way to uniformly at random generate
a graph that is isomorphic to a given graph. Describe the algorithm
by means of pseudo-code and determine its time complexity in the
Big O notation.

c. [2 points] Discuss briefly how sparsity (node degree bounded by a
small constant k) can be exploited to check whether two graphs are
isomorphic.

7. a. [4 points] Does the contact process on Zd have a non-trivial thresh-
old in any dimension d ≥ 1?

b. [4 points] Is the answer the same on a finite graph?

c. [6 points] What is the most relevant quantity for an epidemiologist
to know while monitoring the evolution of a virus spreading in a finite
population? Explain your answer.

8. Given a generic binary undirected graph, let ki denote the degree of vertex
i and ci the local clustering coefficient of vertex i. Imagine that you
produce a scatter plot where each vertex i is represented as a point with
coordinates (ki, ci) in the plane.

a. [4 points] Describe what the scatter plot looks like in typical real-
izations of the Erdős-Rényi random graph model with n nodes and
connection probability p. Explain your answer.

b. [4 points] Describe what the scatter plot looks like in typical re-
alizations of the canonical configuration model, as a function of the
input degree sequence. Explain your answer.

c. [5 points] Describe what the scatter plot looks like in different real-
world networks, and what can be concluded from it about the clus-
tering properties of these networks.

9. Consider a clique (fully connected, unconnected graph) with only three
nodes: v1, v2, and v3. Assume the SIS model with infection rate λ for all
nodes and healing rate µ.

9a. [5 points] Describe the generator matrix of the continuous-time
Markov chain (CTMC) related to the SIS process. You can fill in
the rates in the table below, where the bits represent network states,
e.g., 101 means that v1 and v3 are infected and v2 is in a susceptible
state.
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000 100 010 001 110 101 011 111

000
100
010
001
110
101
011
111

9b. [4 points] Next, for simplicity, consider the SI process. Let node v1
be just infected by a disease and the other nodes be in a susceptible
state at some time t0. What is the time that the system requires to
reach the state where one additional node gets infected (on average).
What is the probability of different states to get this state?
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SOLUTIONS

1a. The reason is that WWW is ‘locally tree-like’, which makes distances small
(of the order of the logarithm of the number of webpages). This property
is called ‘small world’.

1b. Real-world networks consist of ‘nodes’ and ‘links’, which can be mod-
elled as vertices and edges in a graph. Real-world networks are large and
complex, which can be modelled with the help of randomness, because in
general the full architecture of the network is not known.

1c. Sequences of random graphs allow us to model very large networks and
pass to the limit of infinitely many vertices, in which case probabilistic
limit theorems can be derived.

2a. ν =
∑
k∈N kf(k), because f(k) is the probability that vertex 1 has k

neighbours.

2b. ν̄ =
∑
k∈N k

2f(k)/
∑
k∈N kf(k), because f̄(k) = kf(k)/

∑
k∈N kf(k) is the

probability that a randomly chosen neighbour of vertex 1 has k neighbours.

2c. The Cauchy-Schwarz inequality gives ν̄ > ν, unless f puts unit weight
on a single k. In words, since a vertex with a large degree is more likely
to share an edge with vertex 1 than a vertex with a small degree, the
neighbours of vertex 1 on average have more neighbours than vertex 1
itself.

3a. P1(1,− 1
2 ) consist of a one vertex v1 with a self-loop. P2(1,− 1

2 ) consist of
two vertices v1 and v2, either with a self-loop each or with a self-loop at
v1 and an edge between v1 and v2.

3b. The single possibility for P1(1,− 1
2 ) has probability 1. The two possibilities

for P2(1,− 1
2 ) have probability 1

4 , respectively, 3
4 .

3c. Yes. The probability for a vertex to have degree k decays like k−τ as
k →∞, with exponent τ = 3 + (δ/m) = 2.5.

4a. There is only one possible graph G∗ consistent with the degree sequence
~k = (1, 2, 4, 2, 1), and its adjacency matrix is

0 0 1 0 0
0 0 1 1 0
1 1 0 1 1
0 1 1 0 0
0 0 1 0 0

 .

4b. The value of p maximizing the likelihood for the ER with n = 5 and p = p∗

is

p∗ =
2L

n(n− 1)
=

10

5 · 4
=

1

2
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where L = 5 is the number of vertices in G∗.

4c. The expected degree 〈ki〉 of each node i in the ER model with n = 5 and
p = p∗ is

〈ki〉 = p∗(n− 1) =
1

2
· 4 = 2

which is the same for all nodes. Therefore, in the graph G∗, for nodes
i = 1, 5 we have ki < 〈ki〉, while for nodes i = 2, 4 we have ki = 〈ki〉 and
finally for node i = 3 we have ki > 〈ki〉.

4d. The standard deviation σi of the degree of each node i in the ER model
with n = 5 and p = p∗ is

σi =
√
p∗(1− p∗)(n− 1) = 1

which is again the same for all nodes. For each node i in graph G∗, we have
to check whether its realized degree ki is within one standard deviation
from the expected degree, i.e. whether 〈ki〉 − σi ≤ ki ≤ 〈ki〉 + σi. Given
the values 〈ki〉 = 2 and σi = 1 calculated above, this means checking
whether 1 ≤ ki ≤ 3. We see that only node 3, which has degree k3 = 4, is
outside the above range.

4e. The probability of occurrence of G∗ in the ER model with n = 5 and
p = p∗ is given by

P (G∗) = (p∗)L(1− p∗)n(n−1)/2−L,

but since in this particular case p∗ = 1− p∗ = 1/2, we have

P (G∗) = (1/2)L+n(n−1)/2−L = (1/2)n(n−1)/2 = 2−10.

4f. Note that, since p∗ = 1/2, for any other graph with n = 5 nodes we
arrive at the same probability as calculated in the point above, because
the result is independent of the number of links. This is due to the fact
that p∗ = 1/2 implies that both links (p∗) and ‘non-links’ (1 − p∗) occur
with the same probability. Therefore, with n = 5 and p = p∗, in the ER
all graphs (whether ‘similar’ to G∗ or not) occur with exactly the same
probability, equal to 2−10.

5a. g<-graph.adjacency

(matrix(c(0,0,0,1,0,0,

0,0,1,0,0,0,

0,0,0,1,1,0,

0,0,0,0,0,0,

0,0,0,0,0,0,

0,0,0,0,0,0),nrow=6, ncol =6));

g<-graph.formula(1-+4,2-+3,3-+4:5,4,5,6)

5b. The space complexity is Θ(n2) for the adjacency matrix and for the adja-
cency list.
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5c. The space complexity can be reduced to O(nk) = O(n) because, instead
of storing the edges connected to a node in an adjacency list, one can store
the edges in E, i.e., the edges that are not represented.

6a. The number of isomorphic graphs is given by n!, since all the label per-
mutations provide isomorphic graphs.

6b. 1. Initialize an array of all integers from a[1] = 1, . . . , a[|V |] = |V |.
2. Shuffle the array by applying the Fisher-Yates method

3. For each edge (i, j) in E, output (a[i], a[j]).
The time complexity is O(max(|V |, |E|)).

6c In order to check isomorphism by enumeration, only O(kdn/ke) = O(nkn)
combinations need to be compared.

7a. Yes, λd ∈ (0,∞) for all d ≥ 1. This result is obtained from three inequal-
ities: dλd ≤ λ1, 2dλd ≥ 1, λ1 <∞.

7b. No, for any finite graph the critical threshold for an epidemic is ∞: even-
tually the whole population becomes healthy.

7c. What matters for an epidemic is whether the average time until the popu-
lation becomes healthy is small or large. For large finite graphs that have
certain regularity properties, there is a critical threshold above (below)
which the average time grows exponentially (logarithmically) fast with
the number of vertices.

8a. In typical realizations of the Erdős-Rényi model, the degrees of vertices
are distributed around the expected value 〈k〉 = p(n − 1) ≈ pn accord-
ing to a binomial distribution (which, in the sparse case, approaches a
Poisson distribution) and the clustering coefficient of each node is nar-
rowly distributed around its expected value 〈ci〉 = p (which is the same
for all noddes). This means that a typical scatter plot is a ‘ball’ of points
randomly scattered around the point (pn, p).

8b. In typical realizations of the canonical configuration model with given de-
gree sequence, the ki coordinates of the scatter plot are fixed by the cho-
sen degree sequence, while each of the ci coordinates will be randomly

scattered around its expected value 〈ci〉 =
∑

k 6=i,j

∑
j 6=i pijpjkpki∑

k 6=i,j

∑
j 6=i pijpki

, where

pij = xixj/(1 + xixj) and each xi is such that ki =
∑
j 6=i pij . If the

input degree sequence is a constant vector, then the canonical configura-
tion model reduces to the Erdős-Rényi model discussed in point 8a above.
As the degree sequence becomes more and more heterogeneous, the scatter
plot acquires a typically decreasing trend. If the degree distribution has a
decreasing power-law tail, then the tail of the scatter plot is a decreasing
power law as well.

8c. In real-world networks, the empirical scatter plot is generally decreasing,
indicating a sort of hierarchical organization of triangles as a function
of the degree of their participating nodes. Low-degree nodes are con-
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nected to a few high-degree nodes which are connected among themselves,
thus closing many potential triangles and producing a large local cluster-
ing coefficient. On the other hand, high-degree nodes are connected to
many nodes that have low degree and that are generally not connected
among themselves, thus producting a low local clustering coefficient. In
any case, what matters in order to assess whether there is a high or low
level of clustering is not the empirical scatter plot itself, but rather its
comparison with the one obtained in the configuration model with the
same input degree sequence as the empirical one. High or low clustering
is then signalled locally by some points of the empirical scatter plot being
significantly above/below the points of the corresponding vertices in the
scatter plot obtained in the configuration model. Both possibilities are
observed in real-world networks. In some cases (e.g. interbank networks),
an almost complete consistency with the configuration model is observed,
indicating ‘random’ clustering.

9a. The state space has size 23, all possible settings of the three nodes to S
and I. The generator matrix can be drawn as a graph.

111

110 101 011

100 010 001

000

000 100 010 001 110 101 011 111
000 0 0 0 0 0 0 0 0
100 m −2l −m 0 0 l l 0 0
010 m 0 −2l −m 0 l 0 l 0
001 m 0 0 −2l −m 0 1 1 0
110 0 m m 0 −2m− l 0 0 l
101 0 m 0 m 0 −2m− l 0 l
011 0 0 m m 0 0 −2m− l l
111 0 0 0 0 m m m −3m

9b. The average time to infect the next node is 1/(2λ). The subsequent state
is with equal probability (p = 0.5) the state 101 and 110.

9c. The total time can be simulated by the following program:

1. Time ← 0

2. For i = 1 to N

3. Time ← Time + ExpDistribution(1/ (i(N − i)))
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4. Return Time

Remarks:
- This makes use of the fact that the probability that in a single differential
time step more than one node gets infected is zero.
- Each susceptible node at time step i can get infected from i nodes (at
rate iλ), and there are n− i nodes that can get infected in the next time
step.
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