97 zoekresultaten voor “machine learning” in de Publieke website
-
Massively collaborative machine learning
Promotor: J. N. Kok, Co-promotor: A. J. Knobbe
-
Efficient tuning of automated machine learning pipelines
Automated Machine Learning (AutoML) is widely used to automatically build a suitable practical Machine Learning (ML) model for an arbitrary real-world problem, reducing the effort of practitioners in the ML development cycle for real-world applications. Optimization is a key part of a typical AutoML…
-
Computational speedups and learning separations in quantum machine learning
This thesis investigates the contribution of quantum computers to machine learning, a field called Quantum Machine Learning. Quantum Machine Learning promises innovative perspectives and methods for solving complex problems in machine learning, leveraging the unique capabilities of quantum computers…
-
Machine learning and computer vision for urban drainage inspections
Sewer pipes are an essential infrastructure in modern society and their proper operation is important for public health. To keep sewer pipes operational as much as possible, periodical inspections for defects are performed.
-
Reliable and Fair Machine Learning for Risk Assessment
The focus of this thesis is on the technical methods which help promote the movement towards Trustworthy AI, specifically within the Inspectorate of the Netherlands.
-
Automated machine learning for dynamic energy management using time-series data
Time-series forecasting through modelling sequences of temporally dependent observations has many industrial and scientific applications. While machine learning models have been widely used to create time-series forecasting models, creating efficient and performant time-series forecasting models is…
-
of post-translationally modified peptides in Streptomyces with machine learning
The ongoing increase in antimicrobial resistance combined with the low discovery of novel antibiotics is a serious threat to our health care.
-
Machine learning-based NO2 estimation from seagoing ships using TROPOMI/S5P satellite data
The marine shipping industry is one of the strongest emitters of nitrogen oxides (NOx), a pollutant detrimental to ecology and human health. Over the last 20 years, the pollution produced by power plants, the industry sector, and cars has been decreasing.
-
The flux and flow of data: connecting large datasets with machine learning in a drug discovery envirionment
This thesis focuses on data found in the field of computational drug discovery. New insight can be obtained by applying machine learning in various ways and in a variety of domains. Two studies delved into the application of proteochemometrics (PCM), a machine learning technique that can be used to…
-
PNAS Paperprijs voor quantum machine learning
‘We hopen dat ons artikel de mogelijkheden en voordelen laat zien van het gebruik van kunstmatige intelligentie in de quantumfysica om nieuwe ontdekkingen te doen.’ Vedran Dunjko van het Leiden Institute of Advanced Computer Science droeg bij aan een artikel dat vorig jaar verscheen in PNAS. Het artikel…
-
Optimally weighted ensembles of surrogate models for sequential parameter optimization
It is a common technique in global optimization with expensive black-box functions to learn a surrogate-model of the response function from past evaluations and use it to decide on the location of future evaluations.
-
Modelling the interactions of advanced micro- and nanoparticles with novel entities
Novel entities may pose risks to humans and the environment. The small particle size and relatively large surface area of micro- and nanoparticles (MNPs) make them capable of adsorbing other novel entities, leading to the formation of aggregated contamination.
-
Exploring big data approaches in the context of early stage clinical
Als gevolg van de grote technologische vooruitgang in de gezondheidszorg worden in toenemende mate gegevens verzameld tijdens de uitvoering van klinische onderzoeken.
-
Network analysis methods for smart inspection in the transport domain
Transport inspectorates are looking for novel methods to identify dangerous behavior, ultimately to reduce risks associated to the movements of people and goods. We explore a data-driven approach to arrive at smart inspections of vehicles.
-
Data-driven donation strategies: understanding and predicting blood donor deferral
The research in this dissertation aims to optimise blood donation processes in the framework of the Dutch national blood bank Sanquin. The primary health risk for blood donors is iron deficiency, which is evaluated based on donors' hemoglobin and ferritin levels.
-
Algorithm selection and configuration for Noisy Intermediate Scale Quantum methods for industrial applications
Quantum hardware comes with a different computing paradigm and new ways to tackle applications. Much effort has to be put into understanding how to leverage this technology to give real-world advantages in areas of interest for industries such as combinatorial optimization or machine learning.
-
Data-Driven Risk Assessment in Infrastructure Networks
Leiden University and the Ministry of Infrastructure and Water Management are involved in a collaboration in the form of a research project titled 'Data-Driven Risk Assessment in Infrastructure Networks'
-
Frans Rodenburg
Wiskunde en Natuurwetenschappen
-
Numerical exploration of statistical physics
In this thesis, we examine various systems through the lens of several numerical methods.
-
EJLS symposium editorial : is fairness in digital governance a trap?
In dit artikel onderzoeken Barrie Sander en zijn collega's of eerlijkheid in digitaal bestuur onbedoeld structurele ongelijkheden verankert.
-
Wouter van Loon
Faculteit der Sociale Wetenschappen
-
Spectral imaging and tomographic reconstruction methods for industrial applications
Radiography is an important technique to inspect objects, with applications in airports and hospitals. X-ray imaging is also essential in industry, for instance in food safety checks for the presence of foreign objects.
-
Model-assisted robust optimization for continuous black-box problems
Uncertainty and noise are frequently-encountered obstacles in real-world applications of numerical optimization. The practice of optimization that deals with uncertainties and noise is commonly referred to as robust optimization.
-
Methods and Tools for Mining Multivariate Time Series
Mining time series is a machine learning subfield that focuses on a particular data structure, where variables are measured over (short or long) periods of time.
-
Robust rules for prediction and description.
In this work, we attempt to answer the question:
-
Chen Li
Wiskunde en Natuurwetenschappen
-
Grip on software: understanding development progress of SCRUM sprints and backlogs
Software development is a complex process. It is important that software products become stable and maintainable assets.
-
Using cryo-EM methods to uncover structure and function of bacteriophages
Bacteriophages, or phages for short, are the most abundant biological entity in nature. They shape bacterial communities and are a major driving force in bacterial evolution.
-
Philipp Kropf
Wiskunde en Natuurwetenschappen
-
I-Fan Lin
Wiskunde en Natuurwetenschappen
-
Tom Kouwenhoven
Wiskunde en Natuurwetenschappen
-
Automated de novo metabolite identification with mass spectrometry and cheminformatics
Promotor: T. Hankemeier, Co-Promotores: T. Reijmers, L. Coulier
-
Calculated Moves: Generating Air Combat Behaviour
By training with virtual opponents known as computer generated forces (CGFs), trainee fighter pilots can build the experience necessary for air combat operations, at a fraction of the cost of training with real aircraft.
-
Anna Dawid-Lekowska
Wiskunde en Natuurwetenschappen
-
Filter-based reconstruction methods for tomography
Promotor: K.J. Batenburg
-
Novel analytical approaches to characterize particles in biopharmaceuticals
Particles are omnipresent in biopharmaceutical products. In protein-based therapeutics such particles are generally associated with impurities, either derived from the drug product itself (e.g. protein aggregates), or from extrinsic contaminations (e.g. cellulose fibers).
-
Suzan Verberne in de Volkskrant over nieuwe vertaaltechnologieën
Een intelligente vertaalmachine gebaseerd op nieuwe ontwikkelingen in machine learning gaat de concurrentie aan met grote vertaalservices als die van Google. Maar ook Google maakt grote vorderingen sinds het is het is overgestapt op deep learning, aldus informatica-onderzoeker Suzan Verberne in de V…
-
Christos Athanasiadis
Wiskunde en Natuurwetenschappen
-
High-contrast spectroscopy of exoplanet atmospheres
More than 5,000 exoplanets have been found over the past couple of decades. These exoplanets show a tremendous diversity, ranging from scorching hot Jupiters, common super-Earths, to widely separated super-Jupiters on the planet/brown dwarf boundary.
-
Holger Hoos in NRC over AI-braindrain in Nederland
NRC bespreekt met vier universiteiten de braindrain die zich in Nederland op het gebied van kunstmatige intelligentie (AI) afspeelt.
-
From pixels to patterns: AI-driven image analysis in multiple domains
This thesis investigates the application of deep learning techniques in image analysis across various domains, focusing on four main themes: feature extraction, classification, segmentation, and integration, demonstrating the transformative potential of these technologies.
-
On the optimization of imaging pipelines
In this thesis, topics relating to the optimization of high-throughput pipelines used for imaging are discussed. In particular, different levels of implementation, i.e., conceptual, software, and hardware, are discussed and the thesis outlines how advances on each level need to be made to make gains…
-
BNAIC/Benelearn conferentie groot succes
Reinforcement learning, agents en classificatie: dit zijn slechts enkele van de onderwerpen die onderzoekers op de BNAIC/BeneLearn-conferentie 2020 hebben besproken. Het was de eerste keer dat de Universiteit Leiden als gastheer optrad voor de jaarlijkse Belgisch Nederlandse Kunstmatige Intelligentie…
-
Grünwald ontvangt hoogste Nederlandse prijs voor statistiek en besliskunde
Prof.dr. Peter Grünwald, hoogleraar Statistisch leren, heeft donderdag 8 april de Van Dantzigprijs uitgereikt gekregen, de hoogste Nederlandse prijs voor statistiek en besliskunde.
-
'Europa verliest de slag op gebied van kunstmatige intelligentie'
Europa ligt op het gebied van kunstmatige intelligentie achter op China en de Verenigde Staten, wat zorgt voor een brain drain van talentvolle studenten en wetenschappers. Een hoogstaand onderzoeksinstituut voor kunstmatige intelligentie kan het tij keren, aldus initiatiefnemer Holger Hoos, hoogleraar…
-
Surendra Balraadjsing
Wiskunde en Natuurwetenschappen
-
Data Driven Modeling & Optimization of Industrial Processes
Industrial manufacturing processes, such as the production of steel or the stamping of car body parts, are complex semi-batch processes with many process steps, machine parameters and quality indicators.
-
Satellietdata en algoritmen laten zien welk schip te veel stikstof uitstoot
Zeeschepen stoten nog te veel stikstofoxiden uit. Op volle zee is dat onmogelijk te meten, maar dat gaat veranderen. Solomiia Kurchaba combineerde (satelliet)data en ontwikkelde algoritmen om te kunnen aanwijzen welk schip te veel uitstoot. Kurchaba promoveerde 11 juni.
-
Transforming data into knowledge for intelligent decision-making in early drug discovery
Promotor: A.P.IJzerman Co-promotor: A. Bender
-
Proteins in harmony: Tuning selectivity in early drug discovery
This thesis describes the importance of being able to control the selectivity of potential drug candidates.